SASASILL
LLO&4 S3101L

=

NOTES FROM MISOSYS

-~ FF i

(- | -
TABLE OF CONTENTS
THE BLURB + v ¢ ¢ v ¢ o o o o B 4

CMD-FILE/PRO-CESS Version 2 « « « v « o o o o 7
CONBOZ/PRO-CONBOZ . » & « « ¢ « v o o o o+« 8
CONVCPM/PRO-CURE '+ + &« v v + o o o o o o o« 9
DSMBLR/PRO-DUCE . . « « « v o o o o o o 0 o o 9
EDAS/PRO-CREATE + + v « ¢« v v o o o o o o« o 14
GRASP &« v v v v v e e v e s e e 2l
HELP/PRO-HELP « v v v ¢ ¢ ¢ o o o o o o o o o+ 23
LC/PRO-LE v v v v ¢ v o o o s o o o s o oo o 26
PaDS/PRO-PADS « « « « o« o ¢ o o o o o o o o « 85
THE PROGRAMMER'S GUIDE . . . « v ¢ ¢« « o « « 50
SOLE v v o o o o o s s oo o s o s o seasbl
ZGRAPH/PRO-ZGRAPH « « & ¢ o « o o o o o o o o 57
ZSHELL & sve o o o o o o o o o s o o oo s o 58
CONTRIBUTIONS . « « « o ¢ o o o o o o o o s + 59
NOTES FROM MISOSYS is a publication of MISOSYS, PO Box 48‘8, Alexandria VA
22303. A1l material is copyright (C) 1983 by MISOSYS, all rights reserved.
CP/M is a trademark of Digital Research Incorporated.

LDOS is a trademark of Logical Systems Incorporated.
TRS-80 and TRSDOS are trademarks of Tandy Corporation.

ISSUE 2 - 1

NOTES FROM MISOSYS

THE BLURB

This is the second issue of NOTES FROM MISOSYS. We have received a great
deal of encouragement to continue this publication. I wish to thank all of
you who have expressed such feelings. We certainly intend to continue to
provide this vehicle of information to our customers. MISOSYS firmly believes
in product support. We are making every attempt to produce products of
extremely high quality and excellent value for your dollars - quality in the
software, the documentation, and the support. That's the kind of environment
we strive for with the product itself. The NOTES publication 1is just one
example of after-sale support to the customer.

With the release of Issue II of NOTES, issue I will no longer be
automatically sent to newly registered customers. Therefore, if you do not
have issue I and wish to obtain it, please send us $2 [$3 if non-US] and
request the issue.

Our original goal has been to publish NOTES on a three to four times a
year schedule. Since the last issue was dated May 1 and this issue is dated
December 1, obviously this goal has not been met. The primary reason has been
the tremendous amount of activity taking place at MISOSYS - activity that was
prioritized higher than the production of this issue. For example, since the
last issue was released, MISOSYS has authored and published THE PROGRAMMER'S
GUIDE 70 LDOS/TRSDOS VERSION 6, developed PRO-HELP, PRO-GENY, and the VRHARD
hard disk driver. We completely rewrote CMDFILE to introduce version 2
CMD-FILE and PRO-CESS .- a major undertaking. We assisted Karl Hessinger in
preparing the version 5 ZGRAPH documentation, assisted Rich Deglin in
preparing the MLIB documentation, upgraded the ZSHELL package to add WC, and
aided in planning the MACH2 package. We converted the LC library package to
LDOS 6 for wuse on the Model 4 (the PRO-LC package). We also helped Jim
Frimmel groom the compiler itself. You can't imagine the degree of logistics
necessary in producing a finished LC package. We also published a new
catalog. While all of these activities were going on, Brenda gave birth to
our first daughter, Stacey Elizabeth, on June 8th. I want to spend lots of
time with Stacey in the first few years; therefore, no more working nights
unless absolutely necessary - our days have usually been non-stop. Thus, this
issue of NOTES comes sevén months after the previous one.

This was typed by Stacey: ----- > vbco.1 O/H <-=---

The next thing that we usually discuss in NOTES is a summation of our
new products. I don't want to go into excessive detail here as our complete
catalog was recently mailed to our entire registered customer base. However,
I would Tike to point out some of the significant items that you should be
aware of. First, if you are looking at Mode! 4 products (or products for
release 6 of LDOS), you should pay attention to our PROfessional software
series. All products that are named beginning with "PRO" are for you. We
currently have quite a selection of top-notch software for use with this DOS.
There is PRO-LC, a C-language compiler and Macro-assembler; PRO-CREATE, a
Macro-assembler; PRO-CESS, a load module maintenance utility; PRO-CON80Z, a
utility to translate 8080 source files to Z-80; PRO-CURE, a utility to
transfer files from C(P/M media to LDOS; PRO-HELP, a help facility of
reasonable size; PRO-MACH2, a file allocation package that let's you
put-it-where-you-want; PRO-GENY, a collection of four unique support

ISSUE 2 - 2

NOTES FROM MISOSYS

utilities; PRO-PaDS, a partitioned data set wutility; PRO-ZCAT, a disk
cataloger; PRO-ZGRAPH, a pixel graphic editor and printing package; and the
PROGRAMMER'S GUIDE. We also have the VRHARD hard disk driver package for both
Model I/III LDOS 5.1 and LDOS 6.x.

The new products for the Model I/III user (including the Max-80) include
CMD-FILE version 2 which is similar to PRO-CESS; CONVCPM version 2, which is
similar to PRO-CURE; ZCAT, the Model I/III disk cataloger for use with LDOS;
and the enhanced version 5 of ZGRAPH. Rich Deglin joins our group of
free-lance programmers with the publication of MLIB by MISOSYS. Let me say
that if you are currently using Microsoft's M-80 assembler which generates
relocatable code files (/REL) or FORTRAN-80, COBOL-80, or BASCOM, you need
MLIB. MLIB is a librarian for creating, building, managing, and maintaining
relocatable libraries. MLIB, as supplied by MISOgYS. picks up where Microsoft
left off. Since Microsoft has never supplied their librarian as is done with
the price-inflated CP/M packages, TRS-80 users have never had the librarian
capability. You can get it now with MLIB - as well as get readable
documentation which describes the REL format.

When you read through this issue of NOTES, you will find offers to
update CONVCPM, ZSHELL, ZGRAPH, LC 1.0, and PRO-CREATE 4.la. Other products
may have patches identified to either correct known bugs or add improvements.
Unless otherwise specified, anytime that you want to return a diskette to get
the most recent copy of your version release (i.e. 1.1, 1.2, 1.3, etc. and
not 1.1 to 2.1), instead of applying the patches yourself, you may return the
diskette in a protective mailer with $5 per diskette.

Now let me say a word about sending diskettes in the mail. Radio Shack
makes a disk mailer (Cat No 26-1317) which a lot of you use for mailing
5-1/4" diskettes. This is a good mailer. Somewhere I have seen the statement
that the mailer 1is designed for ONE, repeat ONE diskette. Why is this so?
There appears to be sufficient depth for a single diskette in the interior of
the mailer. When you try to squeeze more than one disk into the mailer, the
constant over-pressure tends to compress the edges of the diskette. A
diskette compressed in this manner sometimes has difficulty in freely turning
in the diskette jacket because of the jacket's pressure on the media. Other
types of mailers - both homemade and commercial - may also exhibit this
tendency. I have received reports from users getting an update that the
diskette is unreadable. Invariably, the difficulty is caused by the inability
of the diskette to turn stemming from the compression. Therefore, whatever
you wuse to mail diskettes, make sure that the wrapping does indeed protect
your diskettes. There is no reason for you to have to incur a delay in
getting a needed and desired update - as well as no need for us to have to
duplicate a second time.

Another problem that has come up concerns only our non-US retail
customers and the payment for merchandise ordered with foreign checks [a
foreign check is a check that is not drawn against an American bank]. Since
our commercial bank has started to deduct an excessive fee to clear foreign
checks, we will no longer accept checks drawn on a foreign bank as payment
for retail orders. Our foreign customers are urged to use either MasterCard
or VISA credit card accounts, International Postal Money Orders, foreign bank
checks/drafts drawn against an American bank, or cash sent certified and
registered (we would prefer any of the first three methods over cash).

ISSUE 2 - 3

NOTES FROM MISOSYS

Now for the specials. Since this issue of NOTES should reach you during
the end-of-the-year buying season, MISOSYS is going to do something it hasn't
attempted before. Although our philosophy has been to offer a continuing
stability of our pricing structure, the time has come to- reward our loyal
customers with the opportunity to stock up on quality products at year end
reduced prices. First, our catalog announces a discount of 15% on everything
in our 83-2 catalog. The discount expires 12/31/83. This gives you the
opportunity of purchasing LC/PRO-LC for $127.50 [plus shipping] - a savings
of $22.50. Perhaps you want to take advantage of this offer to get our new
MACH2 package for $34.

Alternatively, we are going to offer some item specials. These specials
will be strictly for our NOTES FROM MISOSYS readers. These specials will last
from now until January 31lst, 1984. The 15% off discount does not apply to
these specials.

$33555535555555555855555583555883858888

SPECIAL PRICES
UNTIL 01/31/84

CMD-FILE or PRO-CESS 2.0....$25
ZSHELL.evueernesrnsnosneesss$25
(115 {; D ...$39
MSP-01 or PRO-GENY..........$25

PAAAAAANAPAAAN

: You must mention NOTES to qualify
$3553538555555535535585535335355385353838

Turning to another subject, I think that it is time to dispense with all
of the rumors concerning my relationship with Logical Systems, Inc. and my
activities concerning LDOS. Anyone familiar with LDOS knows that I was the
individual primarily responsible for software development of LDOS version 5
and the re-design of version 5 into version 6. I have nurtured LDOS for a
long time now and have no intentions of deserting it. A few years of my life
have been spent taking care of that system and it has become a part of me.

PAAPRPAPAAAAAAANN

With the completion of LDOS 6.0, LSI decided that all software
development of LSI products will be performed at the LSI headquarters. Since
LSI is located at Milwaukee, WI and I am located at Alexandria, VA, my
services were no longer required. Although I am still a minority stockholder
of LSI, I have no control over how that company is run. I regret being
ejected from any further active involvement with "my system", however, it was
LSI's decision. I have no intentions of relocating to Wisconsin in order to
continue such activities; I still intend to respond to questions concerning
the DOS that I may be able to answer. Now let's get back to work.

The last issue of NOTES was sent SURFACE to our foreign (foreign is the
term we shall apply for mailing purposes to all countries other than the
United States and Canada). I have had a few requests from foreign customers
to send NOTES by air mail. This issue is being sent BULK MAIL to our United

ISSUE 2 - 4

NOTES FROM MISOSYS

States customers, First Class to Canada, and A0 Air to our foreign customers.
We will attempt to continue these mailing methods in 1984 with a projection
for three issues of NOTES. As an example of the difference in rates for
surface versus A0 Air, a 4-ounce issue can be mailed surface to any country
for $0.71 while the cost would be $1.68 for Europe and $2.08 for Australia
and Japan. Domestic BULK RATE is $0.11. Therefore, we would appreciate it if
our ;qreign customers would remit $5 per year for the continuation of NOTES
via Air.

Don't forget that we are also open to receive small articles concerning
the use of any MISOSYS product. We will make every attempt to publish your
item in the next issue. Also, contributed programs are acceptable. I now call
your attention to the following items of commercial interest.

Riclin Computer Products - Software for the Lobo MAX-80

I
|
LCOPY is all you will ever need to transfer files from LDOS |
disks to MAX-80 CP/M disks. LCOPY runs under CP/M. It is simple|
to use, as its command syntax is similar to that of PIP. LCOPY |
supports the following LDOS formats: 8-inch SSDD or DSDD;
5-1/4-inch, 35, 40, 77, or 80 cylinders, SSSD, SSDD, DSSD, and |
DSDD. LCOPY supports all MAX-80 CP/M formats. Commands may be |
entered on the CP/M command line, or one at a time following |
the LCOPY prompt. The following command formats are supported: |
X:=Y:AFN (wildcarded filename); X:=Y:UFN (one file only); and |
X:UFN1=Y:UFN2 (one file only with a new name). If the file
already exists on the destination CP/M disk, it will be saved |
as a backup (.BAK) file. Parameter specifications may be added |
to any command line: V - copy visible files; I - copy invisible|
files; S - copy system files; M - copy modified files; N - copy|
new files; 0 - copy old files; Q - query by file; E - erase |
previous copy of destination file (no .BAK); D - copy files by |
date (all LDOS date forms are supported). CVTEXT is supplied |
which converts TRS-80 ASCII text files to CP/M format. LCOPY is]|
priced at $40; available in either 8" or 5-1/4" CP/M formats. |
I
MAXFONT allows you to create alternate MAX-80 video fonts. It |
includes an interface to GRASP; this enables direct printing |
of these fonts on an Epson M series printer with Graphtrax. |
MAXFONT runs under LDOS and is menu-driven. Commands include: |
Load/Write font from/to disk; Get/Store font from/to character
generator; View/Print font; Clear from memory; Restore original|
font; Disk directory; Kill disk file; and Edit font. Edit is |
also menu-driven, and is similar to the GRASP editor. MAXFONT |
is supplied with sample fonts and INSTALL which loads a font =
|
|
|
|
|

from disk to the character generator from DOS Ready. MAXFONT is
available in 8" and 5-1/4" LDOS formats, and is priced at $40.

Please send check or money order to: Riclin Software Products,
4901 Seminary Road, Suite 1003, Alexandria, VA 22311.

ISSUE 2 - 5

NOTES FROM MISOSYS

E.S.P. - Enhanced Systems Packages for the Model IV and MAX-80

Make use of those "extra" features in your advanced machine
under LDOS 5.1.x! Use E.S.P...

|
|
|
|
0 MAXDISK and M4DISK - alternate memory bank, 64K, high speed |

RAM disk. Can be system or any other drive. Drive contents |
are recoverable after reboot. |
D080 - full function 80x24 video driver, including scroll |
protect, special character mode, BLINK support, PRINT@, more. |
STATLINE - 25th status line support for MAX-80 80x24 video. |
DOEDIT80 - full screen 80x24 LDOS command line editor. |
SWAPMODE - change from/to 64x16/80x24 mode with one keystroke|
PRTOGGLE - engage/disengage a *DO|*PR LINK with one keystroke|
NOROM - run your Model IV in Model III mode without the ROM. |
ALTLD - dump/load the 64K alternate memory bank to/from disk.
ALTRES - reside system overlays in the alternate memory bank.
FKEY - program the MAX-80's function keys to your desire

[=]

00000000

Order from Riclin Computer Products [see address above] or
MicrConsultants - East, 7509 Wellesley, College Park MD 20740.

|
|
|
Programs fully compatible; all filters and drivers SYSGENable. |
|
|
Mode! IV or MAX-80 packages, $40 each, $70 for the set of two. |

I

ISSUE 2 - 6

NOTES FROM MISOSYS

CMD-FILE/PRO-CESS Version 2

When I set out to port my CMOFILE program over to LDOS 6.x and the Model
4, I knew that I wanted to introduce many new functions that I have never
seen existing in any other load module maintenance utility. The primary
function desired was the reorganization (packing) of load records that
existed in non-sequential load order as well as in less than maximum length
(the maximum size of a load record is a block of 256 load bytes plus the
4-byte per record overhead). Cassette operations were going to be dropped.
Also, since I have become interested in the user-acceptance of friendly
menu-driven applications, the new version was to be menu controlled.

After the product was complete, I wanted to bring the powerful features
back to the Models I and III since MISOSYS has no intention of deserting our

.. Model 1I/III audience. Wherever possible, we will develop a product for Model

I/III users as well as the LDOS/TRSDOS 6.x audience [and other systems in the
near futurel. The big problem came in naming the Model I/III product. Since
the product was derived from and represented a major enhancement of CMDFILE,
1 decided to continue to name the Model I/III product CMD-FILE 2. If you do
not use cassette functions, then the new version practically replaces the old
version of CMDFILE [the only missing function is the addition of the
“appendage"].

Let's take a look at what I have implemented in the- load module
“packing" function. First, since a module may have had LDOS's X-type patch
records applied, CMD- FILE/PRO CESS removes all X-patches and converts them to
"direct" D-type patches where possible. Any remaining X-type patches are
placed into new 1load records. The file is then sorted sequentially by load
address. Finally, the file is written with maximum-sized load records for all
load bytes that are contiguous.

As an example of the utility of this operation, take a look at the
output of the LC compiler. LC generates separate regions for code and data.
Everytime you specify a static data element [i.e. "character string" or
static variables], the compiler has to switch the program counter to the data
region then switch back to the code region. When this sequence is assembled,
it results in generating new load records EVERY TIME THE PC IS SWITCHED.
Thus, the resulting 1load module is not optimized for maximum-sized load
records. If you are using LC to generate commercial software, you owe your
customers the best load module. You should use CMD-FILE/PRO-CESS to pack that
file.

As another example, I analyzed some very inefficient programs as far as
load record size. Take RSCOBOL and RUNCOBOL, for instance. Both of these
programs which are included with the Radio Shack COBOL package are composed
of 16-byte load records. Since each load record has four bytes of overhead,
256 bytes of program take up 320 bytes of file space in both programs. This
compares to 260 bytes for programs written with 256-byte load records. After
processing RUNCOBOL with CMD-FILE 2, I reduced RUNCOBOL from 1537 load
records down to 97 load records while the disk space taken up by the file
shrank from 121 sectors down to 98 sectors - A SAVINGS OF 6K OF DISK SPACE!
Not only disk space was saved but also 1oad1ng time. It took approximately 11
seconds to load RUNCOBOL under TRSDOS 1.3 prior to packing it. After packing,
it took about 10 seconds. That 9% improvement over all the invocations of

ISSUE 2 - 7

NOTES FROM MISOSYS

RUNCOBOL by all the COBOL users represents a great deal of time!

In case you wonder how I got the password protected RUNCOBOL and RSCOBOL
accessed, I'11 tell you. I just read the TRSDOS diskette's directory using
the LDOS extended debugger and changed the password and attributes to enable
the access.

Another use of the packing function is to generate a load module with
sequential load records. Non-sequential load record files cannot be properly
disassembled by DSMBLR/PRO-DUCE with data screening. Therefore, by processing
such a file with CMD-FILE/PRO-CESS, it's ready for disassembly.

Now that I have given you a little lead-in to some uses of this load
module maintenance package, I can shift over to supplying two patches. These
patches are only for PRO-CESS, not the Model I/III CMD-FILE version.

. PROCESS1/FIX - 10/13/83 - Applied 520021
. Corrects cursor UP/DOWN after BREAK

. and MAP printing after printer error.
D00, DD=98

F00,DD=74

D15,E9=F5 CD 74 45 F1 C9
F15,E9=00 00 00 00 00 00
D07 ,27=D9

F07,27=D1

. End of patch

. PROCESS2/FIX -"10/27/83 - Applied 520021
. This patch corrects the END address

. after an IMAGE LOAD invocation
D02,3C=9E 45

F02,3C=E4 34

D15,EF=06 00 C3 E4 34

F15,EF=00 00 00 00 00

. This patch corrects PACK of X-patches
. where the last byte of a load record
. is being patched.

D09,9C=2F 6F 23

F09,9C=ED 44 6F

. End of patch

CON80Z/PRO-CONBOZ

Bernd Jung of Dusseldorf, West Germany reports a few problems with the
CON8BOZ program that apparently slipped by our testing. Specifically, Bernd
discovered that: 1) "CNC XYZ" was not decoded to “CALL NC,XYZ*; 2) “CPO XYZ"
was not decoded to "CALL P0O,XYZ"; 3) "ACI n" was decoded to "CP A,n" instead
of "ADC A,n"; 4) "RST n" was passed unchanged instead of converting "n" to
"p"; and 5) "HLT" was not decoded to "HALT" but was left as "HLT".

Two of the five bugs can be fixed by patches; however, since three of

the five cannot, I decided to correct my source and reassemble. Therefore,
MISOSYS is now shipping CON80Z version 1.1 and PRO-CON8OZ version 1.1. If you

ISSUE 2 - 8

NOTES FROM MISOSYS

are currently in possession of a -1.0 version vopy of CON80Z and wish to
obtain the corrected version 1.1, please return your master diskette in a
protective mailer. There will not be a charge for the update to your disk.

CONVCPM/PRO-CURE

A patch is needed to CONVCPM version 1.3. It corrects a problem when
using CONVCPM with high-memory drivers. The patch is as follows:

PATCH CONVCPM (D01,13=03)
The address in question is X'5303' and the old value was an X'0l'.

Our new catalog presents information on CONVCPM/PRO-CURE version 2. This
release expands the supported CP/M media types. If you currently have the
CONVCPM version 1.x and want to upgrade to the CONVCPM version 2.x, please
return your CONVCPM master diskette with $20. A completely new package will
be returned to you. Note that there is no offer to upgrade from CONVCPM 1.x
to PRO-CURE.

DSMBLR/PRO-DUCE

We have had so many positive reports on version III of our disassembler
that I am glad to have taken the time to enhance the DSMBLR II package. You
may be aware that the DSMBLR is one of the first products ever released by
MISOSYS. The original version I was for Model I cassette machines. A version
was done for the Exatron stringy floppy. We expanded DSMBLR to version 2.0
and added disk source file output. I believe it was version 2.2 which
supported Model III. The third version supports disassembly direct from disk
- a function that we received so many requests for. We went beyond just disk
input and added a screening mode to provide user definition of data areas.
Thus, Version III provides for the specification of literals (messages and
other strings), words (DEFWs/DWs for the hackers), and bytes (DBs and DEFBs
again for the hackers).

Version III is supported under TRSDOS/LDOS 6.x under the product name
PRO-DUCE - since it produces assembly code. The Model I/III compatible
product called DSMBLR III was designed to be fully compatible with LDOS 5.0,
LDOS 5.1, TRSDOS 2.3 (Model 1I) and TRSDOS 1.3 (Model III). DSMBLR probably
runs under other Model I/II1 operating systems; however, we only guarantee it
under LDOS and TRSDOS (sorry, we don't support anything under TRSDOS 2.7DD).

The disassembler is a powerful product. Although there are still some
features that you may want (such as user-defined labels and online entry of
screening ranges), I feel it is a bargain at the $40 price. As good as the
disassembler is, a bug or two still found its way past our testing.
Therefore, a couple of patches follow. The patch syntax shown is for Model
I/II1 LDOS or TRSDOS 6.x (in the case of PRO-DUCE). For TRSDOS 1.3 PATCH,
convert the "Dxx,Byy=zz zz zz" syntax to "ADD=aaaa,FIND=bbbb,CHG=cccccc"
using the "zz zz zz" for “"cccccc", the values shown as WAS for “bbbb", and
the address shown as @X'hhhh' for “aaaa". DSMBLR3x refers to Model I/III

ISSUE 2 - 9

NOTES FROM MISOSYS

[note that DSMBLR31 and DSMBLR32 were applied prior to release] whereas
PRODUCEx refers to the PRO-DUCE version:

. DSMBLR33/FIX - Applied starting with 530099

. Patch corrects command entry of parameters w/o filespec
D00,D5=00 00; WAS D6 0D @X'5491'

D09,95=C3 3E 67; WAS C2 7B 5E @Xx'5D2D'

D13,CE=FE 41 DA 30 5D C3 7B 5E; Were zeroes @X'673E'

. End of patch

. PRODUCE1/FIX - Applied starting with 530013

. Patch corrects command entry of parameters w/o filespec
D00, 97=00 00

F00,97=D6 0D

D09,3C=C3 97 43

F09,3C=C2 34 3B

D12,1F=FE 41 DA DB 3A C3 34 3B

F12,1F=00 00 00 00 00 00 00 00

. End of patch

. DSMBLR34/FIX - Applied starting with 530310

. Patch corrects swapping disks when output disk is full
D11,60=C3 46 67; WAS F6 01 C9 @x'640DC'

D13,D6=11 BE 73 F6 01 C9; Were zeroes @X'6746'

. END OF PATCH

. PRODUCE2/FIX - App]ied starting with 530080

. Patch corrects swapping disks when output disk is full
DOF,CD=C3 9F 43

FOF,CD=F6 01 C9

D12,27=11 34 4F F6 01 C9

F12,27=00 00 00 00 00 00

. END OF PATCH

The following patch is derived from an X-patch that was placed on the
LDOS Compuserve bulletin board. The name of the contributor had scrolled off
the display before I was able to SCREEN PRINT the text so I cannot give
credit where credit is due. I can suggest that if you have developed any
patch to a MISOSYS product, why not send it to us so that we may evaluate it.
Perhaps there is a better way of accomplishing the desired result. Perhaps we
can at least give the other users a chance at implementing your change. In
any event, I rewrote the patch to shorten it a little and converted it to a
DIRECT patch It now is official and uses a small portion of the patch area I
reserved in the disassembler product.

. DSMBLR35/FIX - 10/06/83 - APPLIED 530409

. CORRECTS BUG WHEN A LITERAL SCREENING RANGE
. IS SPECIFIED THAT INCLUDES A LABEL EQUATE

. OF NEGATIVE DISPLACEMENT GREATER THAN 9

009,33=CD 4C 67
. WAS (D 47 5C @X'5CCF'
D13,DC=FE 3A 38 08 F5 3E 31 12 13 F1 D6 OA C3 47 5C
. WAS 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 @X'674C’
. END OF PATCH

ISSUE 2 - 10

NOTES FROM MISOSYS

. PRODUCE3/FIX - 10/06/83 - APPLIED 530080

. CORRECTS BUG WHEN A LITERAL SCREENING RANGE
. IS SPECIFIED THAT INCLUDES A LABEL EQUATE

. OF NEGATIVE DISPLACEMENT GREATER THAN 9

D08,E3=CD A5 43
F08,E3=CD F7 39
D12,2D=FE 3A 38 08 F5 3E 31 12 13 F1 D6 OA C3 F7 39
F12,20=00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
. END OF PATCH

. DSMBLR36/FIX - 11/21/83 - Applied 530486

. Corrects possible crash on excess interstitial labels
D09,38=CD; Was BF @X'5CD4'

. End of patch

. PRODUCE4/FIX - 11/21/83 - Applied 530100

. Corrects possible crash on excess interstitial labels
D08, E8=CD

F08,E8=BF

. End of patch

Now that the buggy patches have been identified, let me turn to some
improvements. Bernd Jung is one of my devoted users in West Germany. I
sometimes feel that I know the guy personally having communicated so
frequently via letters. In any event, Bernd does a lot of work with the 8085
chip. This chip is an improved 8080. The disassembler can handle 8085 code to
produce Z-80 mnemonics [not that useless of a result as you may imagine]. The
only problem is that the 8085 uses the op codes 20H and 30H for the RIM and
SIM instructions [Read Interrupt Mask and Set Interrupt Mask]. These op codes
are used in the Z-80 as two-byte instructions. Thus, DSMBLR would cough a
little on RIM and SIM instructions.

To help Bernd out of this limitation, I worked up a little patch to
DSMBLR III to support the 8085 [actually I had to work it up twice since the
first patch created a bug in the disassembly of two other instructions: “LD
(nnnn),HL" and “LD (nnnn),A". If I get sufficient requests, I'1l try to work
up such a patch for PRO-DUCE [or maybe yet someone who has both DSMBLR and
PRO-DUCE could work up the patch]l. The change is shown in assembly source
code form. It is left to the reader as an exercise to convert it to a patch.
Don't forget, the Model 100 uses an 8085 compatible chip!

;08085
MOVOP EQU 5A3BH
SHFT3 EQU 5720H

ORG 6BB8H
DB ‘1 sChange 20H & 30H
ORG S6E9H
CALL PATCH+1 ;Patch single-byte OPs
ORG SA9DH
PATCH RET ;Mask B2LBL
cp 20H ;Is it RIM?
LD HL,SIM$;Init to SIM string
JR Z,D0RIM ;Go if RIM

ISSUE 2 - 11

NOTES FROM MISOSYS

cp 30H ;Test for SIM and do it
JR NZ,MOVOP ;Else do the original code
DB 0C2H ;Ignore next inst
DORIM LD L,RIM$.AND.OFFH
POP AF ;Clean the stack
JpP SHFT3
RIMS DB 'RIM'
SIM$ DB ‘SIM*
END

Some people are never happy with the designer's choice of expression.
That's why we always want to customize canned software. Bernd was unhappy
with our choice of "M" as the label prefix [we actually got complaints about
the letter "Z" used in DSMBLR II so I changed to an "M" for MISOSYS]. To
satisfy those that want their own character, you can patch DSMBLR III at
X'5AE5' with the character of your choice - make it a character acceptable to
your assembler. The corresponding PRO-DUCE location is X'3895'. The value is
currently an X'4D' [note: giving addresses helps promote the sale of LSI's
FED uti}ity which runs circles around all other utilities for zapping load
modules]. .

James A. Sladek, of Norfolk, VA, points out a minor typo in the
documentation on page 19. Step 4 of the DEBUG procedure used with Model I
TRSDOS should specify the new value as "3C" not "7C" as noted. In fact, the
"7C" is what the old value is! While I'm at it, an easier way from BASIC is
to just "POKE &H46B0,60". One of these days I might write an article on the
entire procedure to convert TRSDOS 2.3 to the Model III data address mark
convention. -

James must be one of my early DSMBLR users as he mentioned the “infamous
TRS-80 printer DCB bug of initialization to 67 lines per page". This pertains
to Model I only. To remind the Model I users, the *PR device control block
lines-per-page field was initialized by TRSDOS to 67 although the printer
driver's counter started from zero. Thus, paper tended to migrate up one line
per page (11" paper has 66 1lines per page). My old DSMBLR documentation
mentioned this and suggested that you poke a 66 into X'4028'. As an aside,
Tandy "corrected" the problem on the Model III by keeping the 67 but
reindexing the starting value to one. Enough of that! James supplied a patch
to Model I TRSDOS SYSO to have SYSO correct the value to 66. The values shown
are for DISK TRACK, SECTOR and BYTE:

T01,505,BF2=3E 42 32 28 40; WAS 2C 20 00 3E 03
T01,S05,BFD=00; WAS F5

101,506,812=00 00 00; WAS F1 3D 20
T01,506,816=00 00 00; WAS 3A EC 37

As a final note from James, he wanted more space for the title on
disassembler listings. He there worked up a patch to "sacrifice" my title and
lengthen the user title to 51 characters. James suggested that I implement
his change 1in a future release; unfortunately, vanity precludes me from doing
so. I will share his patch with you. This patch is for DSMBLR III only. If
someone wants to work up the equivalent patch for PRO-DUCE, I will publish it
in a future NOTES.)

ISSUE 2 - 12

NOTES FROM MISOSYS

5FC1 from OC to 33
5FC3 from 9E to 75
SFCC from OC to 33
6258 from 9C to 75
6874 from 4D to 03
6875-68AA from TEXT to 20

Let me share a few responses to letters received concerning the
disassembler version III

Ervan Darnell qustioned me about the "MFFFF" label which always seemed
to be generated even though the program being disassembled neither referenced
X'FFFF* nor had a -1 (X'FFFF') reference as an operand to a 16-bit
instruction. The "MFFFF"* label is always generated as that value is used to
prime the table which collects address references. Its presence in no way
affects the integrity of the output nor is it detrimental in any way, short
of using one line of a printout.

Ervan also was one of the first to report difficulty in screening a
program direct from disk when the program contained load records that were
not in sequential order [actually, Robert Newton first identified such a
quirk]. The problem, that of not “screening load blocks which load into lower
memory than the previous block", is a limitation due to the design of the
disassembler. I would venture to guess that 95% of all programs are in
sequential load order. The DSMBLR properly handles those 95%. It does this by
first sorting your array of screening data then searching the "array" at each
logical PC address. If DSMBLR wanted to handle the 5% of programs that are
out of sequence, it would have to search the table at each logical PC. This
was felt to be inefficient and would ‘occupy considerable time. DSMBLR was
programmed to handle the 95% of the cases rapidly! I suspect that the DSMBLR
documentation will be tightened a little to reflect on this limitation. As
part of this "problem", you are restricted to not have a screening range that
is lower than the first logical PC address.

Another problem also stems from a limitation that can be easily
rectified by paying careful attention to your screening data ranges. If a
file has a sequential but non-contiguous load record, the disassembler by
itself properly handles the disassembly and generates another ORG statement.
However, if you have specified a screening data range that traverses the
boundary between such a load record and its previous record, the disassembler
cannot handle it. We may revise the decoding algorithm to handle such a case,
but for now, tighten up your screening data. For instance, a program has a
message extending from X'7777' through X'7787', a 16-byte gap (perhaps a DEFS
16), then another message from X'7797' through X'779F'. Do_ not enter one
range as "$7777-779F* but specify the two ranges, "$7777-7787,$7797-779F".

As long as I am talking about screening data, let me talk a little on
why I came up with the scheme that I did. This discussion is for the
programming users. Every one of you knows that you love to tinker with
programs that you have purchased. Its difficult, however, to understand every
program you want to tinker with. Wouldn't it be great if those that tinkered
and wanted to offer their information to others, had a convenient means of
doing so. With assemblers as powerful as EDAS/PRO-CREATE, all you need is a
good set of source code to make whatever customization you wanted to make. If
you have spent the time to disassemble a machine language program and want to

ISSUE 2 - 13

NOTES FROM MISOSYS

share the results of your efforts, all that is needed is for you to publish
your screening data file - which can be placed into the public domain. If you
wanted to make it commercially available, you could publish it as a product.
Imagine what you could do by creating a set of screening files for FORTRAN,
or SCRIPSIT, or PROFILE, or ... With your screening files, the MISOSYS
disassembler, and a purchased copy of the product referenced by the files,
most individuals could easily alter the canned software product to suit their
own desires. The screening data file is a Tlegal means to develop and promote
the generation of source code files. Enough said?

EDAS VERSION 4.1/PRO-CREATE

The EDAS/PRO-CREATE column this issue will first start with a correction
to a patch published in the 1last issue. The 1line in EDAS410/FIX that read
D1B,7E=28 08... should have read D1B,7E=28 04... The corrected patch is shown
below. :

. EDAS410/FIX - 01/04/83 - Roy Soltoff

. This FIX corrects the symbol table addition on the
. statement: LABEL <TAB> ;COMMENT

. Patched starting with 820428

D12,55=FE 3B C2 63 72 4D C3 28 72

.; WAS 00 00 00 00 00 00 00 00 00
D1B,7E=28 04 C3 54 69 00 FE 3B 28 DE
.3 WAS 20 04 FE 3B 28 DA FE 3B 28 C5
. end of patch "

The next three patches are for Model I/III EDAS. They should be applied
to your working copy of EDAS based on the serial number of your master.

. EDAS415/FIX - 05/18/83 - Applied starting 820663
. This fix corrects the bug where the -IM assembly option
. may cause an erroneous "File not open" error.

- PATCH EDAS/CMD USING EDAS415

D12,7A=B6 21 01 5A B6 C9
. was 00 00 00 00 00 00
D1A,5F=CD 79 69

was 21 26 38
. End of fix

. EDAS416/FIX - 05/18/83 - Applied starting 820663
. This fix corrects the bug introduced by EDAS414/FIX
. when MACROs are used and -WS option is specified.

- PATCH EDAS/CMD USING EDAS416
D12,80=2A B4 56 22 CE 57 C9
. was 00 00 00 00 00 00 00

D19,DA=CD 7F 69
. was 2A B4 56

ISSUE 2 - 14

NOTES FROM MISOSYS

. End of fix

. EDAS417/FIX - 10/18/83 - Applied starting 820996
. This fix corrects the bug that sometimes occurred
. when you entered EDAS with a wrong parameter.

. PATCH EDAS/CMD USING EDAS417
D02,FD=67 44; WAS 2C 58
D06,87=0D; WAS Al

. End of patch

There are three patches for PRO-DUCE Version 4.1. They are as follows:

. PCREATO1/FIX - 05/18/83 - Applied starting 820013
. This fix corrects the bug where the -IM assembly option
. causes low memory to be altered.

: PATCH EDAS/CMD USING PCREATO1

D12,68=B6 21 26 38 B6 C9
F12,68=00 00 00 00 00 00
D1A,55=CD FC 47
F1A,55=21 26 38

. End of fix

. PCREATO2/FIX - 05/18/83 - Applied starting 820013
. This fix corrects the bug introduced
. when MACROs are used and -WS option is specified.

PATCH EDAS/CMD USING PCREATO02

D12,71=2A B4 34 22 CE 35 C9
. was 00 00 00 00 00 00 00
D19,00=CD 02 48

. was 2A B4 34

. End of fix

. PCREATO3/FIX - 10/18/83 - Applied starting 820996
. This fix corrects the bug that sometimes occurred
. when you entered EDAS with a wrong parameter.

. PATCH EDAS/CMD USING EDAS417
D02,9C=3E OA EF

F02,96=CD 5F 39

D06 ,8A=0D

F06,8A=Al

. End of patch

Now that I am discussing PRO-CREATE, a minor drawback in its operation
was discovered when testing the PRO-LC package. If an error occurred during
the assembly process, the assembler aborts to DOS ready. This left any output
files open. In order to correct this problem, it was necessary to alter the
source code and reassemble the assembler instead of patching. Thus, starting
with serial number 820072, MISOSYS 1is shipping PRO-CREATE version 4.2a. If
you have PRO-CREATE version 4.1 and want the 4.2a version, you can return

ISSUE 2 - 15

NOTES FROM MISOSYS

your master disk with $5 to cover the update handling costs. Be aware that
the PRO-LC package contains only one 40-track double density diskette. That
diskette includes the entire compiler and assembler files. Therefore, if you
have tendered an order for PRO-LC and have already received version 4.1 of
the assembler, you will NOT have to return your PRO-CREATE diskette as you
will automatically get version 4.2 with the PRO-LC. However, if you are not
ordering PRO-LC, you may want to get the 4.2 release to keep current. Let me
stress that this does NOT pertain to the Model I/III EDAS.

Let me now get on to some discussions concerning the use of EDAS. Robert
Newton asks, "A subject that I would like to see explained in your lucid
style in the next NOTES is the use of LORG. I recently had occasion to use
it, but just never got the hang of it. For example, how do you revert back to
where you really are?" Bob raises a good point.

The EDAS manual states that "A load-origin assembler directive, 'LORG',
is provided to cause the load addresses of the object file to be based on the
LORG operand while the execution code address references will still be based
on the 'ORG' operand." Microsoft's M-80 assembler uses .PHASE and .DEPHASE to
switch the "load origin"” on and off, whereas EDAS provides only the one
pseudo-0P.

Before I state exactly what needs to be entered to answer Bob's
question, let me address the concept of LORG. Being able to generate a load
module that 1loads at an address different from where it executes is most
important when you are writing what is called ROMable code. Many TRS-80's are
used as Z-80 (or even 8080) development systems. Such a system is used to
generate software which will run on :some other machine. The typical use is
the generation of softWare to be placed in a Programmable Read Only Memory
(PROM). There are a few companies that sell "PROM burners". Take a look at
any TRS-80 publication and you will see ads for such equipment.

The PROM burner gets its name from the method 1in which a PROM is
programmed. The typical PROM direct from the factory essentially contains
memory cells that are all 1's. That is, each bit is turned on by a diode
connection. In order to transfer a memory image to the PROM, wherever the
image has a zero bit, the corresponding PROM bit must be changed from a one
to a zero. This is done by electrically destroying the diode - the process
sometimes called "burning" [Erasable PROMs, or EPROMS, are programmed
differently]. Now the function of the PROM burner is to read the memory image
and burn the appropriate bits in the PROM. The memory image usually must be
scanned hundreds of times in the process. Where the PROM burner connects to
the development machine's bus, it addresses the RAM. On a Model I, about the
lowest address you could load a program is X'5200'. What do you do when the
program that is to be placed into the PROM needs to execute at X'1000'. You
have the requirement to get the program into memory at an address different
from where it executes.

There are various ways of accomplishing the address offset function. You
could use TRSDOS 1.3's RELO command. You could use CMDFILE/PRO-CESS. You
could also directly generate the file to load at X'5200' but execute at
éééSOO' by assembling it with EDAS wusing "ORG 1000H" followed by "LORG

H".

ISSUE 2 - 16

NOTES FROM MISOSYS

Let's look at what EDAS does with this set of statements. EDAS maintains
an offset counter whose contents are always added to the load address when a
load record is generated. If EDAS encounters an LORG, it evaluates the
operand and subtracts the current program counter value from the LORG
operand. This result becomes the LORG offset counter value. Thus, with the
above ORG/LORG statements, the offset counter would contain a value of
X'4200'.

Say that we have a situation where the “"offset" is to be in effect for
only a portion of the assembled program. How can we SWITCH OFF the offset? In
order to switch the offset OFF, we have to return it to a zero value. Since
we know its value is actually the difference between the LORG operand and the
current program counter, it becomes easy to switch the LORG off by specifying
a new ORG and LORG with the operand values identical. I originally told Bob
that he can do this by specifying “LORG $". That statement will reset the
LORG offset to zero since the "g“ specifies the current program counter.
However, since there may have been code that was generated but not yet output
as a load block, we want to force it to be output as a load record before
resetting the LORG offset. This can only occur if either the load record is
at maximum size (256 bytes) or an ORG with a non-sequential address is
encontered. Therefore, the proper way to turn off the LORG is to specify both
an ORG and LORG with identical addresses but non-sequential to the last
address assembled.

There are other reasons for using LORG. As an example, let's discuss the
LDOS BACKUP program. This program contains three modules of code. The first
is the module which handles all of your parameters, checks the source and
destination disks, etc. The second module performs the mirror-image backup
function. The third module performs the reconstruct or by-class backup
function. In order to maximize buffer space for the actual backup performed,
it would be ideal to relocate the mirror-image or reconstruct module to the
lowest available memory. Also, a portion of the first module is not needed
after the options are parsed and evaluated. Thus, we have a classic case of a
large program divided into three modules, two of which must be loaded at an
address different from where they will execute.

Prior to EDAS 4.1, Each module was assembled separately. The second and
third modules referenced labels in the first so an EQUATE file was generated
with XREF so the second and third modules could be properly assembled. After
the second and third modules were assembled, they were offset using CMDFILE,
and rewritten. The entire process was clumsy although easily accomplished by
Job Control Language. LORG was added to EDAS specifically to handle BACKUP
(and FORMAT) as a single assembly. Thus, the two modules that needed offset
loading from their execution were generated as part of the single assembly
process.

So much for LORG. The next discussion stems from a request forwarded by
Ray D. Greet, of Lockleys Australia. Ray wanted to be able to use the *SEARCH
directive of EDAS to load macros from a macro library just like *SEARCH is
used to obtain assembler source subroutines need to resolve your program's
references. Let me share my response to Ray.

The *SEARCH directive was implemented to permit the inclusion of library

modules during the assembly process. This function corresponds to the library
search process during a linkage of separately assembled relocatable modules.

ISSUE 2 - 17

NOTES FROM MISOSYS

The Microsoft LINK80 (L-80) performs a sequential search of a REL library
file which may contain numerous modules. LINK80 performs a SINGLE sequential
search. Thus, if the tenth module needed a routine located 1in the third
module, the third module would not be linked unless referenced by some other
module linked prior to reaching the tenth module. That deficiency is due to
the single search of the library.

When I implemented the *SEARCH directive, I felt that it was necessary
to resolve all references (i.e. externals) regardless of order within the
library. To accomplish this, EDAS performs multiple searches of the library's
directory until it makes a complete pass through the directory without
bringing in a member. EDAS brings in a module when it finds the member name
matches a symbol in the symbol table which is currently referenced but
undefined. So that EDAS does not lock wup in a condition whereby a module is
brought in which does not define the label that caused it to be brought in,
EDAS will provide a member definition error if the module does not define the
label which caused its inclusion.

In the case of MACROs, you will not have a fixed label within the MACRO.
By its very nature, they must have different labels on each expansion or else
multiple symbol definition errors will occur. Therefore, the "self-defining
symbol" problem would prevail. Another restriction with MACROs is that they
need to be defined prior to their reference (how else would the assembler
know how many addresses to advance the program counter?). All is not lost.
EDAS can be fooled into 1loading a MACRO from a library. Consider that the
name of the MACRO can be referenced BUT NOT VIA A MACRO CALL REQUEST. For
instance, if you have a MACRO named "ADDHLA" stored in a PaDS library with i
member name ADDHLA, use the following statements at the beginning of your
assembler program: v

DUMMY DEFL ADDHLA!MACRO2!MACRO3
*SEARCH MACLIB

Note that you can have more than one MACRO name referenced by ORing the
names. You could OR, AND, ADD, etc. The above DEFL statement can be
correlated with an EXTERNAL statement on other assemblers. Yes, you will
define the symbol, DUMMY, but so what? If you do not want to "waste" another
label, use "@@l", "@@2", "@@3", or "B@4" which are always defined by the
assembler (note: don't use the @@n 1labels if you are using command-line
arguments P1, P2, P3, and P4).

The above will work since EDAS will not flag as an error, a reference to
a symbol of the same name as a MACRO. It will flag as an error a definition
of a symbol the same name as a MACRO. Good luck in your "search".

Another issue involves the *GET directive and actually also pertains to
*SEARCH. One of my users had experienced difficulty when nesting *GETs. EDAS
can handle up to five levels of nesting (this is version 4.1). However, when
EDAS tried to read the second level, it gave this user a "Bad parameters"
error. The error pertains to a bad file format. Read on to find out why this
error appeared and what you can do about it.

The standard header of assembler source files is a X'D3' followed by a

6-character name. Since this convention was established by Microsoft in the
original version of EDTASM and carried forward by Apparat in their disk

ISSUE 2 - 18

NOTES FROM MISOSYS

version of Radio Shacks EDTASM, I can only guess at its significance. For
cassette files, it's useful to be able to identify the type of file. The
X'D3' serves that purpose. Is it a coincidence that X'D3' 1is the letter “S"
with the high order bit set ("S" for source). Anyway, that's the header
record. Microsoft also established the assembler statement format as a
5-character line number with each high order bit set followed by a space
(X'20') followed by the source statement, and terminated by a carriage
return. M-80 and FORTRAN actually use a TAB in lieu of the space as used in
EDTASM.

Our position is that headers and line numbers take up space and waste
file loading time. EDAS 3.5 permitted you to load a file either with/without
a header and with/without line numbers. This was done by specifying.
auxilliary characters with the "L" command. The EDAS 3.5 *GET directive
required a headered and numbered file. EDAS 4.1 automatically detects the
presence of a header and line numbers. The header is ascertained by examining
the first byte of the file. If it's a X'D3', the file is assumed to have a
header. Once the header determination is made, the first character of the
first statement is examined. If it has the high order bit set, the file is
assumed numbered. ‘

When *GET is used, the determination is performed for the first file. If
a *GET is nested, the determination has already been made. Thus the secondary
file must have the same arrangement as the higher level file in terms of
header and line numbers. This means that if the higher 1level file has no
header nor line numbers, the nested file cannot have line numbers nor can it
have a header. It is possible to redesign the assembler so that the nesting
routine would save the current header/number flags®and restore them at the
nest exit; however, it does not appear to be too necessary. Just remember to
keep all files used with *GET with the same header/number configuration.
Also, if a *GET file has a *SEARCH directive, all of the library routines
should be the same construction as the *GET file.

Michael D. Caubarreaux, of Houston, TX, has a problem with the conflict
of pagination when using the LDOS printer filter (FORMS filter for TRSDOS
6.x). Since EDAS and XREF both do their own line counting, If you have a
filter in.your printer device that also does line counting and forms control,
the two programs are fighting each other. Let me share my response to
Michael.

Let me attempt to resolve the queries. concerning paging conflicts. To
begin with, both EDAS and XREF incorporate the capabilities of pagination and
titling the 1listings that each produces (assembler listing for EDAS and
cross-reference listing for XREF). In order to accomplish this 1listing
pagination, it is necessary to keep an internal line counter. Any external
filtering that does its own pagination is self defeating for the purposes of
titling. Printer filters are nice to be able to supply customization to meet
certain formats (such as long/short paper, wrap-around, indent, paper eject,
etc.). However, when you have an application that generates a title on each
page of output, either the application must take care of its own line
counting, or there must exist STANDARDIZED feedback from the 0S to the
application.

The feedback from the system to the application is insufficiently
standard, in my opinion, to deal with its use by an application (such as EDAS

ISSUE 2 - 19

NOTES FROM MISOSYS

or XREF). Therefore, it is necessary to reach some compromise. If you demand
to be able to control your paging external to our applications, then you will
have to give up the titling generated by EDAS/XREF. Patches to do this will
follow this text. Alternatively, you can recognize what parameters you have
set for page-length and 1lines printed-per-page within the printer filtering
process and tell EDAS/XREF what those are. XREF provides command-line options
to adjust its 1line-width (LEN), page-length (PAGE), and lines-per-page
(LINES). EDAS provides a command (1) to set PAGE and LINES for its internal
use. Why not use them?

Herewith are patches to disable paging checks:

Patch to EDAS/CMD Version 4.1
D04,87=C9; was CO

Patch to XREF/CMD Version 4.1la
D06,62=C9; was CO

I hope that these patches are sufficient to resolve what you consider to
be conflicts with EDAS/XREF and printer filtering.

Note: PRO-CREATE users may utilize the following patches:

Patch to PRO-CREATE 4.1
D04, 44=C9
FO4,44=C0

Patch to PRO-CREATE 4.2
D04 ,8E=C9 v
F04,8E=CO

Patch to XREF supplied with PRO-CREATE
006, 38=C9
F06,38=C0

Finally, D. F. Roberts of Cirencester, England reports two problems. I
won't bore you with the first one since it was corrected with EDAS48/FIX. His
second problem was as follows: "The second is one which strange to say is
similar to one which also existed on the Microsoft Editor Assembler Plus.
Namely if one symbol is equated to a label using the EQU directive, a
'Multiple Definition Error' 1is incorrectly given. This only happens if the
value of the label is non-zero!!. If the DEFL directive is used the error is
not generated so this can be used to avoid the problem, however if there is a
simple cure it would be nice to have it corrected.*

D.F went on to illustrate sample code which produced the error:

ABC EQU DEF
DEF EQU 1
END

1 believe that D.F has totally misunderstood the differences between EQU and
DEFL because what he/she is purporting is ABSOLUTELY NO ERROR in EDAS!!! It
is not a bug in EDTASM+, either. Since it is possible that someone else may
also misunderstand the difference, let me emphasize. The EDAS manual states

ISSUE 2 - 20

NOTES FROM MISOSYS

that, "The 'EQU' pseudo-OP is the generally accepted way to define constant
values for use in your program". I should emphasize, CONSTANT. The manual
says of DEFL that, "This declaration is similar to the 'EQU* declaration
except that the label value is permitted to change during the course of the
assembly without producing phase errors".

Let's also remember that the assembler also operates in at least two
passes in order to generate the object code. The first pass through the
source, the assembler is building a table of all labels referenced or defined
in the code. Any time that a label is referenced before it is defined, the
assumed value is zero. Thus in D.F.'s sample, the assembler's first pass
assigns a value of zero to ABC since “DEF* is not yet defined with a value.
The second pass finds that “"DEF" has a value of one and thus "ABC" is equated
to one. However, since ABC was defined via an EQU pseudo-OP which must assign
a CONSTANT value, the. symbol's value has been redefined in error. That is
what a "multiply defined symbol" error means! The fact that the "bug" didn't
materialize if DEF was equated to zero 1is only due to the assembler's
assumption of a zero value for any undefined symbol. If the sample code is
revised to read:

DEF EQ 1
ABC EQU DEF

the desired result will be achieved. The use of DEFL permits the redifinition
of symbols with new values because that is the function of DEFL. The EQU is
an “"equate" of a symbol to a constant value. It is wrong to interchange the
two since that will most likely result in a program bug. DEFL is usually used
when you want to change the value of a symbol. I recommend that those who are
unclear on the EQU?DEFL distinction re-read the manual covering the two
pseudo-0Ps.

In the last issue of NOTES, I delivered a pitch that asked for you GRASP
users to submit any character fonts that you have developed. MISOSYS would
then build up a font disk and make it available to all GRASP users. I am
happy to report that the first disk of character fonts, GRASPF1l, is
available. Via the courtesy of both R. W. 0dlin of Sedro-Woolley, WA and Karl
Hessinger of College Park, MD, GRASPF1 contains ten different character
fonts. Karl has supplied CLASSIC, BIGCHAR, COMPUTER, and COMPRESS. R. W. has
developed some nifty character sets complete with KSM files and JCL
installation procedures. R.W.'s include Anglo-Saxon, Anglo-Saxon BOLD, Irish,
Irish BOLD, Coptic, and Egyptological.

To whet your appetite, I will cite some of the text of R.W.'s letters.
“The Anglo-Saxon set is designed to provide vowels with macron with
CLEAR-{vowel}; the two “th" letters with CLEAR-d and CLEAR-t, on grounds of
visual resemblance; the ligature "ae" with “j*. In all cases, Capitalized
forms may be ascertained by pressing CLEAR-{letter}, backspacing, and typing
SHIFT plus the key indicated.

The great abundance of special forms of 'H' needed by Egyptologists has
made it impossible for the KSM to cover all needed letters in that character

ISSUE 2 - 21

NOTES FROM MISOSYS

set, but it should be easy enough to find those needed (for instance, the
Greek colon appearing in verbal constructions is printed with either CLEAR-I
or CLEAR-N).

Had the Egyptological set been restricted to the transliteration
conventions customary for Middle Egyptian, the set could well have been much
shorter: but there are many off-the-wall methods of transliterating Demotic,
some with an 'e', some with an equals sign, some with neither but something
equally unexpected, and I have tried to satisfy as many as I could learn of.

The Irish set now provides all the accented vowels in upper-case;
aspirated lower-case consonants with the mark of aspiration pleasingly
placed; and aspirated Capital "S" by typing SHIFT-Z.

The bold-face sets turned out so nicely. The COPTIC/ALT filter is not an
upper- and lower-case alphabet but two distinct character sets, since Coptic
does not as a rule employ upper- and lower- case distinctions (nor anything
much in the way of punctuation. I have added some marks for the convenience
of scholars).

I am emboldened to go on, to this effect: two new Greek sets, to
supplement Mr Knight's in 80 MICRO. These will be, tentatively, UNCIAL/ALT
(all u.c., few 'scholastical tittle-tattles') and ALDINE/ALT (a XVIth Century
font with all the squiggles and ligatures of which the period was enamored).

I need not say these are offered for public domain use, in the hopes of
easing the lot of scho]ars in the indicated disciplines." [end of citation]

If you are a reg1stered GRASP user and want to obtain this disk of
fonts, please send $10 and request GRASPFl. The $10 charge covers the cost of
the disk, mailer, processing, and shipping. MISOSYS will continue to seek
character fonts to collect for building GR SPF2. 1 am indebted to R. W. 0dlin
and Karl A. Hessinger for their generosity in making these fonts available.

The next issue was raised by Mike Kaizen. Mike discovered that the use
of COMPRESS in the SETMX80G/CMD program did not enable the compressed (or
condensed) mode. He tracked the problem down to the values being used in
SETMX80G for compressed ON/OFF at address X'5785/6'. His "MX PRINTER MANUAL
with GRAFTRAX" suggests SI (SHIFT-IN or OFH) to enable and DC2 (Device
Control 2 or 12H) to disable. Somehow, values of 50H and 51H are in SETMX80G
[the compressed enable/disable values are correct for SETMX100]. Mike said
that his manual also indicated that 8FH and 92H are equally usable. Karl
Hessinger advised me that his manual stated that in the "text" mode, bit 7 is
ignored: thus OFH and B8FH are equivalent. Appendix 4 of my MX-80 manual
confirm that action.

Now the result of this discussion is to inform you of a patch needed to
SETMX80G/CMD. The patch is as follows:

. SETG1/FIX - 11/10/83 - Applied 400140

. PATCH SETMX80G/CMD using ...

D05,A5=0F 12; WAS 50 51

. End of patch

. Note: this patch can be applied as: PATCH SETMX80G (D05,A5=0F 12)

ISSUE 2 - 22

NOTES FROM MISOSYS

While 1 am on the subject of modifications, let me present a slight
change to the ALTCHAR/BAS program. Currently, it defaults file specifications
to drive one if a drive spec is not part of the file spec. You can change
this so that it doesn't default to any particular drive by changing the code:

IFT=0THENFS$=IN$+"/ALT:1":... to
IFT=0THENFS$=IN$+"/ALT"

By dropping the “:1" from the default string, file specifications that do not
include a drive spec will not be restricted to drive one.

HELP/PRO-HELP

As you may be aware, Scott Loomer authored the Model I/III HELP package
and was the inspiration for the rewrite to bring up the PRO-HELP package.
Scott has worked up a filter which can be used with the Model I/III HELP
package. Rather than try to use my own words to discuss Scott's latest
invention, let me cite a portion of his letter.

“I thought that I'd offer the HELP/FLT as a contribution to your next
'Notes from MISOSYS'. The filter and necessary explanation are relatively
short and it might prove useful to those who have bought HELP. As you'll
notice in the text accompanying the hex code (in HELP/SCR), I'11 be glad to
provide the filter on a disk along with HELP files for LScript, VisiCalc and
EDAS IV for a nominal charge. "

Note that I've also sent along the latest (final) versions of the
HELP/FLT and the above mentioned HELP files for you to do with as you wish.
The work in developing the filter has been rewarded in that there is a fellow
here in Madison that is putting together a typesetting software package that
will include the filter as a means of getting on-line aid in using the
programs.

Incidently, with your PRO series, what are you going to do when you run

out of suitable names? Most of the ones you're using are pretty clever, but I
thought that PROgeny was stretching it quite a bit!"

ISSUE 2 - 23

NOTES FROM MISOSYS

HELP/FLT

Copyright (c) 1983 by Scott A. Loomer, MicroConsultants
Released to the public domain with all commercial rights reserved

The HELP filter (HELP/FLT) allows access to HELP modules from within
applications that use the LDOS(tm) keyboard driver. These include LScript and
Visicalc(tm) when patched to run on LDOS(tm). The syntax to install the
filter is:

FILTER *KI with HELP/FLT (Char=ddd/x'hh'/"c")

| |
| |
| I
] Char - optional activation character parameter |
| default is <Clear><Shift><H>]
| |
| |
I I

Length when installed: 350 bytes

To get HELP from within an application after the filter has been
installed press <CLEAR><SHIFT>XH>. The prompt '{h} help' will be displayed at
the bottom of the screen. Type the appropriate letter(s) to indicate the help
file to be accessed (e.g. to use HELPP type <P>). Next, type a left
parenthesis and the name of the command, option or program to be explained.
The prompt will now look. like this example: '{h} helpp(build)'. The closing
paren is optional. Press <ENTER> and the text will be displayed on the
screen. To return control to the program, press <BREAK>. In VisiCalc, the
screen display is restored by then typing </>,<->,<ENTER>.

To create the HELP/FLT, convert the hex code 1listing below to a binary
file named 'HELP/FLT'. The BINHEX hex to binary conversion program has been
printed in an LDOS Quarterly and is also included with DSMBLR III from
MISOSYS.

Additional HELP modules describing the features and functions of LScript
(including LScriptX), EDAS IV and Visicalc are available for $10 from
MicroConsultants - Central, P.0. Box 55023, Madison, WI 53705. A copy of
HELP/FLT will also be included.

LDOS is a registered trademark of Logical Systems, Inc.
VisiCalc is a registered trademark of VisiCorp

ISSUE 2 - 24

NOTES FROM MISOSYS

HELP/FLT
050648454€502020010200521AE601CA2053D5E5212953C067441104543A
2501FE492020215444224752211144227352228452218A42222453219942
227A54211444222954212B4422C15221BE4222C852E1CD7644C21B5321E8
007CBDCA1B53FE0020037018057E 2100006F 322354E5218853CD6744E1CD
EA52DDE1DDE52A4940018C01703217547C321854AFED42224940230D7E01
321F54DD7E02322054E5C5011554B7E042404400210153DD6E000D66017C
B72811E55E2356EB09EBE17323720023002318E5C1 01 DDE13A0F43CB6F 28
0721BE432BE5SDDE1DD7E01321F54DD7E02322054F 3007301DD7202211554
EDBOFBC32D40CD9IA0ACDBDOF 3E 30323041 3E00323641213041CD67440102
0053C93C5442544F 5458545E546E 547754 7E 5484548C5499542E 54000021
DE531803219853CD7B44C330400A48454C502F464C5420202048656C7020
496E 766F 686572202020205665727 3696F 6E 20352E 31622C203520417567
75737420313938330A436F 70797269676874202863292031393833206279
2053636F 74742041 2E 204C6F 6F 606572202D204D6963726F 436F 6E73756C
74616E74730A0D0A546869732066696C74657220666F 7220696E 70757420
6F6E6C79210D41637469766174696F 6E 206368617261637465722076616C
756520286465636960616C292003506172616065746572206572726F 7221
207B436861723D2263222F 646464 2F 78276401 C200546427700043484152
20204D524320202020204D052001807A1550448454C50CD0000F 5FEE82802
F1C93A0E43E68F 32A0543E0132244021C03F22204021A354CD674421AC54
060BCD4000384B21005211C05401€ 100EDBOED7 3885421204011 BA540106
00EDBO3EC3322040323040217C54222E4022314021A854C30544ED7BB854
11204021BA54010600EDB021C05411005201E100EDBO3E0332AC54C04900
F13E00EFC91E7B687D2068656C7003202020202020202020202000000000
0000000002020052 "

*D6 :

Now for the PRO-HELP wusers, all I have for this issue is a patch. I did
a booboo when I made up the HELP(COMM) screen. Here is a patch to correct it.

. PHELP1/FIX - 11/04/83 - APPLIED 420025
. FIX TO CORRECT HELP(COMM)

D15,CA=04 03 26 00 13 04 02 00 28
F15,CA=02 C3 2D 01 04 03 26 00 13

. END OF PATCH

The bug stemmed from a trailing block of spaces in the original text file. I
had used SCRIPSIT to prepare the HELP screens. It is absloutely essential
that you delete-to-end-of-file after the last ENTER. Make sure that you don't
make this mistake. I may look into a modification of HELPTXT/BAS to pick up
this problem and correct for it.

ISSUE 2 - 25

NOTES FROM MISOSYS

LC/PRO-LC

Let me start out this issue's column on LC with a reminder. If you are
still using LC version 1.0, then you had better send in your disk for an
update to LC version 1l.1. This update offer is still at no charge to you
UNTIL DECEMBER 31, 1983. Beginning January 1, 1984, it will cost you $5 to
update your LC disk from 1.0 to 1.1. Patches to bring your EDAS 4.1 diskette
up to date for version 4.1 were included in the last issue of NOTES and are
continued in this issue of NOTES. If you want us to update your EDAS, there
is a $5 charge.

MISOSYS began shipments of the PRO-LC (TRSDOS/LDOS 6.x compatible
release of LC 1.1) during October 1983. I am proud that this release is
nearly 100% C-source code compatible to the Model I/III version in its
support. To my recollection, the only difference in source code function
interface is the "“ploc(address)" function which had to be different in order
to support the non-resident video of LDOS 6.x type systems. The PRO-LC
release provides for the user-specification of the stack placement: either
high or low memory. This gives the capability of running LC-generated
programs with the DOS spooler active in external memory.

Now with the compiler available on the TRS-80 Models I and III, and
computers running TRSDOS 6.x or LDOS 6.x, it becomes more important to stress
the concepts of portability. A1l of you C programmers should already be aware
that C is a portable language. As long as you keep machine dependent code out
of your source, you can easily port a program from one computer to another.
A1l you need is a compatible compiler.

In testing out the PRO-LC implementation, I tried to deal with compiling
the programs in the LC interest group library. Unfortunately, most programs
were machine dependent. Some used floating point which wasn't yet available
with PRO-LC. Some programs were adapted with minor changes. However, let me
point out that you really ought to pay more attention to keeping portability
over slight variations of machine dependence. As a for-instance, I noticed
many C-source programs with the statement:

#define CLS (0x1c9)();

Now it is a correct statement that programmers have used to clear the video
screen since it defines a function which essentially "calls" the Model I or
111 ROM clear-screen routine. But what happens if you don't have a ROM? Such
a program needs to be changed to compile under PRO-LC. It is good that the
machine dependent “piece"” was implemented as a "#define" which could be
easily edited; however, wouldn't it be better to have used something like:

#define CLS puts("\xlc\x1f");

or include a function, cls(), which does the 'puts(*\l1c\1f")'? I am sure that
many other examples can be illustrated; however, I hope that my point is
clear without burdening you with excessive text. As LC is populated onto more
machines, the more portable you keep your code, the better off you will be.

Now let me insert an errata to the PRO-LC manual [and the current
printing of the LC manuall concerning the call() function. The second

ISSUE 2 - 26

NOTES FROM MISOSYS

paragraph of call() on page 4-36 should be: "On SuperVisor Call accessible
systems, an "address" value of less than 256 will be interpreted as an SVC
reference in lieu of a CALL address. The call() function will then use the
"address" as the SVC number and ignore regs[0]."

It is important for LC/PRO-LC users to realize that there is an active
LC Interest Group. This group was formed in 1982 and 1is chaired by Earl C.
Terwilliger, of Akron Ohio. Earl's dedication and support of the "“C"ers has
resulted in a very useful focal point for the novice, intermediate, and
advanced C-programmer. Earl sums up in his own words, the following synopsis
of the group he started.

“An LC interest group (LCIG) has been formed as a hobby by Earl
Terwilliger. The group can be used to help new users learn LC, to provide
useful programs/functions for the more experienced 'C' programmer and to
provide any member with some useful/functional 'C' programs. It provides a
central place to collect and distribute LC source programs and related files
contributed by its members. The membership fee is $5. The group serves as a
non-profit vehicle to share ideas and programs. Programs submitted by members
are kept on diskettes. There are now 4 diskettes (CSAMPLER, LCIG8301,
LCIG8302, and LCIG8303) [I wouldn't be surprised if by now, Earl has
collected material sufficient for a fifth diskette]l. A copy of any of the
standard LCIG diskettes will be sent to any member for $5 per diskette or $2
per diskette if the member sends in their own media. Members are also
encouraged to contribute programs by sending them on a diskette to the group.
The address for “The LC Interest Group® is as follows:

The LC Interest Group
c/o Earl C. Terwilliger Jr.
647 North Hawkins Ave.
Akron, Ohio 44313
Phone (216) 836-7389"

Let me go through some of the customer queries received concerning LC
that may help you in avoiding problems. The first was submitted by James
Campbell, of Aloha, OR. I appreciated the depth with which James explored the
problem that he was having. Because of this, I would 1like to share his
letter. James wrote: "I have to tell you how much I enjoy using Elsie,
although I am new to the product. I think I have found a bug. You will have
to bear with my explanation, since C is not my native language and Z-80
assembler is something I do not know well.

My problem started when I keyed in your sample from Appendix D-9, to
show the use of call() [note: this sample program first appeared in the 2nd
printing of the LC manual. The example appeared in the LC errata included
with the first printing of the manuall. The program worked to a point,
telling me the current status of my drives--through drive 8 and climbing. I
cut the power about drive 156 or so. Obviously the test was not working
[specifically, the test is 'for (d=0;d<8;++d)'].

After checking my text several times, I got an assembler 1listing and
went into DEBUG. I soon determined that the value being used for the drive
check was not the same one being used for the test against the value 8. I
think the problem is the translation of the inequality test 'd<8'. To get
back the current value of D, the instruction at 01410 should be $GETW D$,

ISSUE 2 - 27

NOTES FROM MISOSYS

not LD HL,D$. I can say that with some confidence, because I used DEBUG to

change the value at 5231 from 210200 to 2A6A5F and the program executed
successfully.

Then again, 1 may be wrong. In any event, I hope the enclosed documents
will help you determine where my problem lies."

James included printouts of his source and the assembler 1listing. He was
right about the need for "$GETW LABEL", which 1is used to fetch a static
integer. Assembler code of the form, "LD HL,LABEL" is wused to obtain the
pointer to a function. So did LC go wrong? My first gut feeling is that it
must be a source code error - don't assume a bug in LC. Armed with this
hypothesis, I easily discovered the bug. In the *"for" statement mentioned
above, the inequality was entered as "D<8" instead of "d<8". Since LC is case
sensitive, "D" and "d" are two different variables. However, since the
assembler requires that all variables be in upper case, LC converts its
symbols on output to upper case. Therefore, if you 1look at an assembler
listing, you cannot tell the difference.

The significance of James's mistype goes beyond just the simple error.
It sheds light on the importance of keeping all variables in lower case.
Recognizing that the compiler is case sensitive, you could have two different
variables spelled the same but different cases! At least as far as the
compiler is concerned - but not the assembler. It has always been recommended
that "defines" use upper case.

I felt it interesting to explore the reason why the compiler generated
the "LD HL,D$" instead of the "$GETW D$" macro. Kernighan & Ritchie state on
page 209, "There are only”two things that can be done with a function: call
it, or take its address. If the name of a function appears in an expression
not in the function name position of a call, a pointer to the function is
generated. ... [the function] must be declared explicitly in the calling
routine since its appearance ... was not followed by (." LC doesn't require
the explicit declaration; therefore, an identifier which has not been
defined, 1is interpreted as a function reference whether it is followed by a
left parenthesis or not. It follows from K&R on page 68 that, “If a name
which has not been previously declared occurs in an expression [omitting 'and
is followed by a left parenthesis'], it is declared by context to be a
function name. Furthermore, by default, the function is assumed to return an
int." The LC manual states that, "A function declared within another function
body is assumed to have a storage class of external. The compiler regards the
declaration as if an 'extern' statement preceded it."

What we then have is an assumed declaration of the form: ‘“extern D();".
When "d" was declared, LC converts this to "d$" to avoid assembler
restrictions on labels. Since "d" was declared as an "int", LC referenced the
variable via the $GETW and $PUTW macros. The assembler requires upper case
labels so LC passes "D$" to the /ASM file. The macro argument converts the
“D$* to an offset from zero and adds the data origin. When "D" was
referenced, it was converted to "D$" to avoid assembler restrictions. Since
"D$" was interpreted as an external function name, LC referenced the variable
strictly by its name. The assembler did not reject this as an undefined
symbol error since "D$" was actually defined based on the original "d".
However, "D$" by itself was only a relative offset from zero. If you examine
the original C declaration of "int rc,d;", you will understand that the value

ISSUE 2 - 28

NOTES FROM MISOSYS

of "“RC$" should be zero while the value of "D$" should be two. That's exactly
what occurred in James's case. The data origin was 5F68 resulting in 5F6A
when "d$" was referenced (D$+$$STORG) but only 2 when referencing "D$".

The next problem to discuss was submmitted by P. Bailey, of Derby,
England. You should be able to gather the queries raised by Mr. Bailey from
my response to him. It went as follows: The "problems" you addressed in your
letter postmarked May 23rd were analyzed by our "C" experts. You may be
surprised at their conclusions.

The first problem, that of being unable to effect a tab using the "\t"
or "\x09" escape sequences, is one of misunderstanding. .You actually did
insert a tab character in the string. What you may fail to realize is that
there is nothing in the output stream that will EXPAND the tab. You can rest
assured that the tab ‘was inserted by redirecting the output to a disk file
and then listing the file in hex (or in ASCII with the TAB=ON parameter).

In order to assure ourselves of the above, the following program was
compiled and run:

main()
{ puts("This is a tab ->\t<- character\n");}

The compiled and assembled tabtest/ccc program performed as expected. [as an
aside, under the LDOS/TRSDOS-type systems, the video driver does not expand
the TAB character. This can be accomplished by the LIST command, however,
when listing a file]

"

Your second problem represented “another degree of confusion. The
illustrated program fragment you supplied can be reduced to the following:

main()

{ loop:
c=getchar();
goto loop;

Notice that you have no test for end-of-file in the getchar() function
invocation. It is true that the program will pause awaiting a character upon
reaching the getchar() function. Even though getchar() will be receiving its
input from the keyboard (unless redirected), it nevertheless is still
possible to transmit an EOF. This is performed by depressing the BREAK key.
Once the BREAK key is depressed, getchar() will continue to return EOF
regardless of any further keyboard operation. One possible recoding of this
loop is as follows:

main()

{ loop:
if ((c=getchar()) != EOF)
goto loop;
else exit;

}

The second problem arose from a need to detect an ABORT condition to
return to a primary menu prompt. This was clarified in a subsequent letter

ISSUE 2 - 29

NOTES FROM MISOSYS

which follows:

Without going into a great explanation, your use of BREAK to escape into
amenu in a "word processor" type of C application can be accomplished
easily. Under C, one needs to be able to maintain device independence; thus,
the BREAK key was selected to provide an end-of-file. Considering in your
application that the primary means of input would be by keyboard, your need
to regain keyboard control after a getchar() and BREAK-EOF 1is quite
important. An elegantly simple solution would be to re-open the standard
input device (stdin) with fopen() when the EOF indication is encountered.
Then have the C program go to the menu mode.

The reopening of stdin also serves to support the redirection of
standard input at the command line to start the input from a disk file and
have it automatically switch to the keyboard upon reaching the EOF from the
disk file. In any event, all you then need is a command to exit your program.

If our NOTES readers have any other solutions, perhaps they may be
submitted.

R. D. Greet, of Lockleys, Australia reports that, "A book that has
turned up locally which I would recommend for first reading on C is THE C
PRIMER by Hancock & Krieger (Byte Books). This gem made clear in my mind
aspects of C that was causing difficulty."

Concerning the issue of books, I have been advised that Paul Chirlian's
book, *Introduction to C", will soon be published by Matrix Publishing
(Matrix is closely assocjated with Dilithium Press). Paul, as you may know,
is the author of many books concerning microcomputers including the book on
Microsoft FORTRAN.

I thought I would relate the findings that Truman Krumholz discovered
concerning the "Sieve" program listed in the last issue of NOTES. He writes:

"In Issue 1 of NOTES FROM MISOSYS is the sieve program in C which was
taken from the January BYTE. As the program appears, my TRS-80 Model I
executes the program in 117 seconds. This agrees with your time taking into
consideration different clock speeds. However, if the line containing the
main statement and the integer declaration line are reversed in order, the
program runs on my Model I in 68 seconds. This is a significant improvement
in speed. Being a beginner with C, I tried this because this is the order in
which the statements appear in the article in BYTE. [actually, Truman is in
error here. The statements are ordered as he states but only in the PASCAL
ve;z;gn of the sieve program. The C version orders the statements as shown in
NO .

For your interest, I also have a home-brewed LNW-80 Model 1I. The only
part of this machine that 1is LNW are the boards. My machine runs at three
speeds, 1.77 mHz, 4mHz, and 5.33 mHz. It also has the capability of switching
out the ROM and the ROM wait states and substituting RAM. Running this
program on the LNW at 5.33 mHz, it executes in 22 seconds. Both the improved
program and the version using multiplication as listed in January BYTE run on
my LNW in 18 seconds at 5.33 mHz.

ISSUE 2 - 30

NOTES FROM MISOSYS

I am enjoying LC very much, but I wish I had more examples to look at.
This is the best way for me to learn a language. I copy programs then modify
them to see what happens. By the way, my best versions of FORTH, writtern by
a local fellow here, ran the program listed in BYTE in 54 seconds (clock
speed at 5.33 mHz). I clocked MMSForth at 188 seconds on my TRS-80 Model I
and 62 seconds on the LNW at 5.33 mHz."

The reason why Truman detected a significant improvement in execution
speed was due to the pronounced effect of re-ordering the declaration of
variables. The variables i, prime, k, count, and iter are local to main()
when defined within main(). This means that they are referenced from the
stack pointer. If their declaration precedes main(), they are global static
variables having a fixed address. In order to access an integer that is
local, the following code must be performed:

LD HL,OFFSET sOFFSET is variable based on current SP
ADD HL,SP ;Calculate actual address of storag
CALL @GINT ;0btain value

The ®@GINT subroutine performs: \LD A, (HL)\INC HL\LD H, (HL)\LD L,A\RET\. The
access of a static global requires only, "“LD HL,($$STORGHNAME)", with the
argument referenced at assembly time. If we evaluate t states, I calculate
that the local takes 72 t-states versus 16 for the global. At 2 mHz, a
t-state is 0.5 microseconds. Thus the additional 56 t-states to access a
local take 28 microseconds. That's PER ACCESS. If your program has hundreds
of thousands of accesses of its variables, then the time difference is
significant. "

The utility of Jlocal variables arises when dealing with recursive
functions. K&R state that "“when a function calls itself recursively, each
invocation gets a fresh set of all the automatic variables, quite independent
of the previous set." This is not true if only statics are used. There are
some very definite advantages for using automatic variables - but the
advantage is not speed. FORTRAN, for example, has no such thing as an
automatic variable. A1l variable addresses are fixed at compile (and link)
time. The same thing is true of compiled BASICs. C gives you a choice. Thus
if you are interested in speed, it may be to your advantage to define your
variables outside of main().

Darach Foskett of Beecher Falls, VT forwarded an interesting problem
which had me going around for awhile. It originates from the text in K& on
page 207 and again on page 86 which concerns token replacement associated
with #define and macro substitutions. I must admit, I had to reread K& a
number of times on this point to understand the discussion. As Darach stated,
his was not so much an LC question since LC does not support macro
substitutions but a general C question. Herewith my response:

The problem stems from a possible misinterpretation of the K&R statement
that, "text inside a string or character constant is not subject to
replacement”. This does not mean that 'identifier arguments' within the
#define macro are not subject to replacement but rather if an 'identifier'
happens to appear in the program, then it will not be substituted. K&R
provide a very brief example of this on page 86 where they illustrate that a
'#define YES whatever' will not be substituted for the 'YES' within the C
statement, 'printf("YES")'.

ISSUE 2 - 31

NOTES FROM MISOSYS

On page 9 of THE C PUZZLE BOOK, it uses the following #define statement:
#define PRINT(int) printf("int = %d\n",int)

The character sequence "int" appears in the #define three times. The first is
as an argument identifier. The second is within the printf() string argument.
The third happens to be the second argument of the printf(). According to my
interpretation of K&, all three appearances of 'int' will be replaced by the
token string. Thus, a statement such as 'PRINT (x <y ?y : x);' will find
the 'PRINT' substituted according to the #define to read as follows:

printf(" x < y?2y:x =%d\n", x<y?y:x);

This statement computes to the result printed in PUZZLE. If I had coded a
statement, 'printf("This is a PRINT Tline!\n");', the 'PRINT' within my
statement would not be subject to any replacement by the PRINT defined by the
#define pre-processor statement.

The answer to your question concerning the use of "int" in the #define
is that the formal macro arguments are totally independent of all other parts
of the source file. You could have 15 #defines - all using the same dummy
parameter name. It is sometimes confusing to Tlook at a program that repeats
the use of the same name because one sometimes forgets which edition of the
name one is referring to. Such is the case with the reuse of identifiers when
you open a new block (i.e. { code }). Although you can repeat the name for a
new local variable, it can be confusing to the programmer.

The next topic is one that I am sure the Model I/III LC users will love
to read. Let me give you a little background. A1l of the LC development work
done at the MISOSYS office has been on hard drives. In the past, a Lobo 5-meg
drive as well as a Radio Shack 5-meg drive have been used. These drives are
very quiet in seeking. In fact, you really cannot hear the movement of the
head if you are listening in a normal level of room noise. Even when LC was
invoked from floppies, the Tandon drives in use were quiet seekers. In fact,
the only noisy drives I recollect were the MPI drives.

In any event, when floppies were used, I always was aware that there was
a perceptively long time when a program loaded before it seemed to do
anything. This effect was just in the back of my mind and the quietness of
the various drives in use masked the “excessive" seek activity actually
taking place.

I presently use a VR Data package which uses Syquest drives with
buffered seek. Although the fan in this cabinet is quite noisy, the drive
itself exhibits a kind of "bubbling" sound when the drive is rapidly stepped
over distances. Since the PRO-LC package was developed using the Model 4 and
VR Data hard drive combination, I became noticably aware of the great number
of seeks occuring not only when LC first started, but programs compiled with
LC.

Now aware that something bothered me, I decided to look into the matter.
It did not take too long to discover that the culprit was the effect of
opening the three standard files. Not that opening in itself was the root
cause, but rather that @FSPEC followed by @OPEN (or @INIT) was successively

ISSUE 2 - 32

NOTES FROM MISOSYS

invoked for each of the three standard files. Now @FSPEC is in SYS1/SYS
whereas @OPEN and @INIT are in SYS2/SYS. Thus, executing a loop that opened
the three files successively vresulted in the access and loading of
SYS1\SYS2\SYSI\SYS2\SYS1\SYS2. This means directory access as well. When a
program first executes, SYS2 is the resident overlay since the DOS just had
to OPEN the program file for loading.

After discussing the "“problem" with Jim Frimmel (I also talked it over
with Karl Hessinger), I decided to add an internal FSPEC-type routine to LC.
This was introduced first into PRO-LC at release time. Because I feel that
the improvement in apparent (and actual) execution speed is significant, I
wanted to apply the same technique to LC. Thus, I have the following
procedure to recommend. If we do an LC 1.2 release, this will become a part
of it. For now, you can easily achieve the same improvement by adopting the
following procedure:

. LC SPEED IMPROVEMENT

. This patch modifies LC/CMD so as to improve the

. speed at which the compiler initializes the

. standard files.

. PATCH LC/CMD.LC USING ...

D6A,08=2F BE; WAS 1C 44

D6E,0B=E5 D5 7E FE 21 38 OF FE 61 38 06 FE 7B 30 02 EE
D6E,1B=20 12 23 13 18 EC 3E 03 12 D1 E1 C9; WERE ZEROES
. End of patch

. This patch modifies LC/LIB so as to improve the
. speed at which compiled programs initialize the
. standard files.

. PATCH LC/LIB.LC USING ...

D2C,BA="@SPEC"; WAS "441CH"

. End of patch

. The following routine must be added to LC/ASM
. and should be placed to follow the statement:
. *SEARCH LC/LIB

. This can be accomplished by loading LC/ASM,

. inserting this routine, then the updated file
. is saved with: W LC.LC

IFDEF FOPEN

*M
@SPEC PUSH HL ;Save registers
PUSH DE
$71 LD A, (HL) sExit on space or less
cP 33 :
JR C,$73
cp 97 sConvert 1/c to U/C
JR c,$?2
cP 123
JR NC,$7?2
XOR 32
$22 LD (DE),A
INC HL ;Bump pointers
INC DE

ISSUE 2 - 33

NOTES FROM MISOSYS

JR $71 ;Loop until exit char
$123 LD A,3 ;Terminate with ETX

LD (DE),A

POP DE sRestore regs

POP HL

RET

ENDIF

The next thing to offer is a program submitted by Karl Hessinger, of
College Park, MD. Karl wrote a conversion program which aids in the
conversion of Model I/III BASIC programs to Model 4 BASIC. Not only is this
program useful in what it does, it is one more source program to help you
learn C. Although it is 1long, it may prove beneficial. Karl's program works
from compressed BASIC program files rather than ASCII program files.

#include stdio/csh
#option redirect OFF
FILE *fpl, *fp2;
char *keyword[128];
int remflag,strflag;
main(argc,argv)
int argc, *argv;
{ char c;
if (argc i=3)
abort(“\n** Parameter error **\n");
puts(*\xlc\x1f");
fpl = getfile(*++argv,'r');
fp2 = getfile(*++argv,!w');
if ((c=getc(fpl)) != '"\xff')
abort("Not a compressed BASIC file!");
setup();
while (!end())
{ linenumber();
remflag = strflag = FALSE;
while ((c=getc(fpl)) != '\0')
if (remflag || strflag [| c I="* ')
{ if (c> 127 & !strflag)
{ if (token(c))
goto lineend;

strflag = strflag ? FALSE : TRUE;

}
lineend : if (strflag)
out(l!l);
out('\n');
}
fclose(fpl);
fclose(fp2);
exit(0);
}
linenumber()
{ int num;

ISSUE 2 - 34

NOTES FROM MISOSYS

num = getc(fpl);

num += getc(fpl)*256;
fprintf(fp2,"%d ",num);
printf("%d “,num);
return(0);

}
end()
{ int flag; char c;
if ((c = getc(fpl)) == EOF)
return TRUE;
flag = c;
if ((c = getc(fpl)) == EOF)
return TRUE;
flag += ¢ * 256;
if (flag == 0)
return TRUE;
else
return FALSE;

}
token(val)
char val;
{ char c; int pos,flag;
fputs(keyword[val-128],fp2);
puts(keyword[val-1281]); .
if (val == 184) /* Strip value after CLEAR */
{ while ((c=getc(fpl)) != ':' & c != '\0')
{} .
if (c=='\0')
return(TRUE);
else
{ out(c);
return(FALSE);

}
if (val ==178) /* PRINT change PRINT@ values */
{ whi}g ((c=getc(fpl)) == ' ')
if (¢c==10")
{ out(c);
pos = 0;
flag = FALSE;
while (isdigit(c=getc(fpl)))
{ flag = TRUE;
pos *= 10;
pos += ¢ - '0';

}
if (flag) :
{ fprintf(fp2,"(%d,%d)",pos/64,pos%64);
printf("(%d,%d)",pos/64,pos%64);

}

if (¢ =="'\0")
return(TRUE);

if (¢ > 127)
return(token(c));

ISSUE 2 - 35

NOTES FROM MISOSYS

else
{ if (c=='"'
strflag = strflag ? FALSE : TRUE;
out(c);
}

}
if (val == 147 || val == 251)
remflag = TRUE;
return(FALSE);

}
getfile(fname,mode)
char *fname, mode;
{ char *fp;

if (mode == 'r')

{ if ((fp=fopen(fname,"r")) == NULL)

{ printf("Open error - %-20s\n",fname);
exit(l);

else return fp;

else if (mode == 'w')
{ if ((fp=fopen(fname,"w")) == NULL)
{ printf("Open error - %-20s\n",fname);
exit(l);

else return fp;

out(c)
char c;
{ putchar(c);
if (c != putc(c,fp2))
{ puts(“File I/0 errori\n");

fclose(fpl);

fclose(fp2);

exit(l);
return(0);

}

setup()

{ keyword[0] = “END “; keyword[1] = “FOR “;
keyword[2] = “"RESET"; keyword[3] = "SET";
keyword[4] = "“CLS "; keyword[5] = "CMD “;
keyword[6] = “"RANDOM *“; keyword[7] = “"NEXT *“;
keyword[8] = "DATA “; keyword[9] = "INPUT *;
keyword[10] = "DIM *; keyword[11] = “READ *“;
keyword[12] = “"LET *; keyword[13] = * GOTO *;
keyword[14] = “"RUN "; keyword[15] = “IF *;
keyword[16] = “RESTORE "; keyword[17] = " GOSUB “;
keyword[18] = “"RETURN “; keyword[19] = “REM *;
keyword[20] = “STOP *; keyword[21] = " ELSE ";
keyword[22] = "TRON *; keyword[23] = "TROFF *“;
keyword[24] = "DEFSTR *"; keyword[25] = "DEFINT “;
keyword[26] = "DEFSNG "; keyword[27] = “DEFDBL ";
keyword[28] = “"LINE "; keyword[29] = "EDIT “;

ISSUE 2 - 36

keyword[30]
keyword[32]
keyword[34]
keyword[36]
keyword[38]
keyword[40]
keyword[42]
keyword[44]
keyword[46]
keyword[48]
keyword[50]
keyword[52]
keyword[54]
keyword[56]
keyword[58]
keyword[60]
keyword[62]
keyword[64]
keyword[66]
keyword[68]
keyword[70]
keyword[72]
keyword[74]
keyword[76]
keyword[78]
keyword[80]
keyword[82]
keyword[84]
keyword[86]
keyword[88]
keyword[90]
keyword[92]
keyword[94]
keyword[96]
keyword[98]
keyword[100]
keyword[102]
keyword[104]
keyword[106]
keyword[108]
keyword[110]
keyword[112]
keyword[114]
keyword[116]
keyword[118]
keyword[120]
keyword[122]
return;

T DO DR D (NN (N NN (N (NN (T T T T (A (A T N U [LI (N IR R} Howonononononn

}

abort(msg)
char *msg;
{ fputs(msg,stderr);
putc(eol,stderr);

}

exit(1l);

“ERROR ";
nouT ",
"OPEN ";
wGET w.
“CLOSE ";
"MERGE ";
KILL “;
"RSET *;
"SYSTEM *;
“"DEF n;
“PRINT *;
WLIST
"DELETE ";
"CLEAR ";
“CSAVE ";
IITAB(M;
"EN ",
"VARPTR ";
“ERL n;

" STRINGS";
" POINT";
" MEM n;

" THEN *;
" STEP ";
n/u;

" AND n;
||>n;

||<u;

" INT";

" FRE n;

" POS";

" RND";

" EXP";

" SlN";
ATN";
cvI";

" CVD";

" Loclu;

" MKIS";
" MKDs“;
" CSNG";
" len;

" STRsu;
" Ascn;

" LEFTS$";
" MID u;

NOTES FROM MISOSYS

keyword[31]
keyword[33]
keyword[35]
keyword[37]
keyword[39]
keyword[41]
keyword[43]
keyword[45]
keyword[47]
keyword[49]
keyword[51]
keyword[53]
keyword[55]
keyword[57]
keyword[59]
keyword[61]
keyword[63]
keyword[65]
keyword[67]
keyword[69]
keyword[71]
keyword[73]
keyword[75]
keyword[77]
keyword[79]
keyword[81]
keyword[83]
keyword[85]
keyword[87]
keyword[89]
keyword[91]
keyword[93]
keyword[95]
keyword[97]
keyword[99]
keyword[101]
keyword[103]
keyword[105]
keyword[107]
keyword[109]
keyword[111]
keyword[113]
keyword[115]
keyword(117]
keyword[119]
keyword[121] =
keyword[123] =

PO IR DR R I LU IR TN (ORI (TN (O O T T (TN TN (T T I (I L}

nouwononononu

ISSUE 2 - 37

“RESUME ";
Ilm n ;
“FIELD ";
‘IPUT Il;
IILOAD ",
llNME "
“LSET *
CISAVE "o
WLPRINT *;
"POKE ";
“CONT *;
WLLIST *;
“AUTO 3
“CLOAD *;
DINEN ll;
" To “ ;
"USING *;
IIUSR ll;
"ERR *;
" INSTR*;
" TIMES *;
" INKEYS *;
" NOT " ;
Il+ II;
e ;
" OR ll;
" SGN " ;
n ABS " ;
" INP L] ;
" SQR L} ;
" LOG " ;
" COS ll;
" TAN " ;

" PEEK";

L] cvs ll;

" EOF II;

" LOF II;

" MKSS" ;

" CINT*;
" CDBL";
" LEN";
" VAL";
" CHRS";

e we w

-

RIGHTS";

NOTES FROM MISOSYS

Finally, I discussed this last idea with Jim Frimmel and he concurred in
its appearance in NOTES. Although C is considered to be a portable language,
situations arise whereby it would be useful to be able to write C-source in
conditional blocks - much like the assembler permits conditional pseudo-OPs.

There do exist conditional processes in a full C preprocessor. Although
not implemented in Elsie, they are #if, #ifdef, #ifndef, #else, and #endif.
Now all of these "conditional" operations are supported in EDAS. Since Elsie
supports an “foption variable" specification which can define "@ variable"
and set it to TRUE or FALSE (actually ON or OFF as used in the assembler), it
becomes a simple matter to construct conditional blocks of code that are not
conditional as far as the compiler is concerned but rather passed through to
the assembler for evaluation of the conditional operations.

To achieve this in the C source, assume that you define an assembler
symbol of "@ TEST" an set it to -1 via the C statement, "#option TEST ON".
Next, a block of C-source code that is to be included in the resultant
program would be surrounded by the statement pair,

#asm #asm
<TAB>IF @ _TEST and <TAB>ENDIF
#endasm #endasm

If you don't want to include the block, specify “#option TEST OFF". Of
course, there are variations such as using, “IFDEF @ TEST" and either
specifying the #option or pot. :

This procedure may not be standard K&R; however, under the present
implementation of Elsie, it does enable conditional C source.

Speaking of Jim Frimmel, it turns out that the previous item was not the
final part of this issue's LC column. Jim has supplied us with the first of
his "C'erious Subjects" columns. Although it may be a little advanced for the
beginning LC user, if you all spend a little time to explore Jim's column, I
am sure you will gain a better understanding of LC.

C'erious Subjects - by Jim Frimmel

Hiya!!! I'd like to discuss with you a few subjects that have been
brought to my attention by LC users, and show you some techniques that may be
useful to have in your bag of LC tricks.)

The first thing is to show you a way to shorten the time required to
assemble LC programs. The method shown is illustrated for Model I/III LC;
however, it can be easily adapted to PRO-LC. The idea is to pre-assamble the
library(s), so that you can use an equate file during each assembly. Then the
assembled program is appended to a copy of the pre-assembled code, resulting
in a runnable program. This technique saves me 30 seconds on every
compile/assembly during development, on a MAX-80 with 8" disks. It will
probably save one minute or so on model I/III's. For your final version of a
program, use the regular LC/JCL file to get the most compact code possible.

Listing 1 shows the assembly file, LCLIB/ASM, that I used to
pre-assemble the LC standard 1library. The REF macro references the symbol

ISSUE 2 - 38

NOTES FROM MISOSYS

following it, so that EDAS IV will retrieve it from the library. You can
adapt this to pre-assemble any library module or combination of library
modules. You don't have to pre-assemble all of a library, and you can
pre-assemble ANY function, whether compiled LC functions or assembly language
functions that you've written yourself. The LC standard library is trickier
than other libraries, so I recommend that you pre-assemble the entire
library, as shown here.

Note also that the options that are set in the LCLIB/ASM file, plus the
defaults in LCMACS/ASM, will determine the options in effect in the
pre-assembled library. Once assembled, the options cannot be changed, so if
special options are needed, either pre-assemble a separate module with those
options, or don't use this technique.

The transfer address of the pre-assembled /CMD file must be removed so
that LC program /CMD files may be appended to it. I actually had to write a
program to do this, since I couldn't figure out a way to do it using LDOS's
extensive utilities. Why, you may ask, don't I just use Command File Utility
to combine the two command files together? I found that it added 15 seconds
(MAX-80 time) to the process, just because of all the friendly prompts in
CMDFILE. The answers require quite a few JCL lines. Over in listing 2 is the
program, XTRA/CCC, to strip the transfer address. Compile and assemble
XTRA/CCC using the normal LC/JCL file.

At this point you are ready to actually generate the LCLIB/CMD and
LCLIB/EQU files. The JCL file in 1listing 3 will do all but one step. If you
have already typed in and compiled XTRA/CCC, and have typed in LCLIB/ASM,
you're ready to DO LCLIB/JCL. The end products will be LCLIB/CMD, the
pre-assembled and stripped version of the LC 1library, and LCLIB/EQU, an
equate file that will define addresses of library functions when assembling
LC programs for use with LCLIB/CMD. One comment about the LCLIB/JCL file:
the 1/0 redirection in the XTRA command 1line is a little strange, in that
standard input and standard output are the SAME FILE! The reason that I can
get away with this is that XTRA writes out exactly what it reads in, minus
four bytes. As a general rule, this can be done as long as the program writes
out one byte for each one read, and shortens the file, or leaves it the same
length. In any other case, results are usually unexpected.

Not all the symbols in the equate file just generated will be useful.
No temporary labels, local labels, macro names, etc. need be included. Try
and get the equate file looking like the one in listing 4, by going in under
EDAS and deleting the unnecessary lines, and adding the few new ones.

We now have to create a modified version of LC/ASM to GET the equate
file. The equate file must be included at the beginning of LC/ASM. The actual
program being assembled must then be ORG'ed past the end of the pre-assembled
code. Since the program may vary in size, the pre-assembled module should
reside below the rest of the program. Listing 5 shows my QLC/ASM file ("Quick
Levelance Cod").

We can now assemble a program using QLC/ASM. A new JCL file (listing 6)
is needed if we're not going to issue the commands manually every time. In
addition to the normal stuff LC/JCL does, it must also combine the two /CMD
files into the final, runnable form. Note that the assembly's /CMD output
file is sent to a temporary file. Then the copy and append are used to

ISSUE 2 - 39

NOTES FROM MISOSYS

generate the final /CMD file.

One thing that you should notice about the new QLC/ASM, and the
pre-assembled standard library: The variables used by the library are placed
in upper memory, at OCOOOH. This is so that @PROGEND (which determines where
alloc() and sbrk() reserve memory) will be defined above all code and
variables. This imposes some limitations on the programmer. If your program
js greater than about 24K bytes long, the symbol, $$STORG (in LCLIB/ASM),
must be equated to a higher value to make room for the larger program. On the
other hand, if your program uses large amounts of space reserved by alloc()
and sbrk(), $$STORG may be decreased to make more room available to alloc()
and free(). In any case, be sure that your program, once assembled, does not
overlap the variables used by LCLIB, which begin at $$STORG (in LCLIB/ASM).

Well, it seems that some of us actually write programs with LC that are
pushing the limits of the memory size in the TRS-80! I've been asked to
explain how to share variables between programs, so 1 guess someone's program
has gotten big enough to need splitting up. well, this one is easy, since all
you have to do is make sure that all programs have the same variables, at the
same place. Also, if initialization must be done on variables, it must take
place in the first program to be run, and the ZVAR option should be OFF for
all subsequent programs. Also, any space gotten by calls to alloc() will no
longer be available when the next program runs. This includes open files as
well. A1l files must be re-opened when the next program runs.

To implement this, first collect all variables that are to be shared
jnto a separate file that_can be included into all programs. You don't have
to put all variables in this file, just the ones to be shared. This file must
be #include'd in each program BEFORE ANY OTHER VARIABLES ARE DECLARED! If you
define other variables first, then the shared variables will be at the wrong
place. Finally, compile and assemble all the programs and check the address
given for $$STORG in each, which is the base of variables in the program.
Choose the highest value, then add some to allow for growth. Now to make it
really happen, make a copy of LC/ASM, and modify the 1line that equates
$$STORG to the program counter, to set $$STORG to the value you have chosen.
Reassemble all the programs using the new /ASM file, and you should be all
set.

That's all for this issue. Look for details on using true overlays in
the next issue of NOTES - if I can get to it. 'Till then, as Olivia says,
“Let's get C'erious!".

LISTING 1°
; LCLIB/ASM - pre-assembly of LC standard library
*GET LCMACS

’
;%%% If you wish any different options, set them here *
@ ZVAR DEFL 0 ; don't initialize var's
;¥*% Macro to reference a name ***
REF MACRO #NAME
$TEMP DEFL #NAME

ENDM

ISSUE 2 - 40

skkkkk

ckkkkk
ckkhkkk
ckkkkk
skkkkk

@PROGE

s kkk
H

-

NOTES FROM MISOSYS

NOTE: This next statement determines how much

space there is for the program, and
divides the program (with var's) from
the areas for alloc() and free().
Change the value as needed.

ND EQU 0COO0OH ;24K for program
REFerences to all LC standard library functions ***
ORG 5200H
REF @AND
REF @ASL
REF @ASR
REF eCoM
REF @eDnIv
REF @EQ

REF @GE

REF OGINT
REF @G0

REF eGT

REF OLE

REF eLT

REF eMULT
REF @NE

REF eNoT
REF @0R

REF @PINT
REF esus
REF euplv ‘
REF OUGE
REF eUGT
REF @ULE
REF GULT
REF ©XO0R
REF ATOI
REF EXIT
REF FGETS
REF FOPEN
REF FPRINTF
REF FPUTS
REF GETC
REF GETCHAR
REF GETS
REF ISALPHA
REF ISDIGIT
REF ISLOWER
REF ISUPPER
REF ITOA
REF ITOX
REF MOVE
REF PRINTF
REF PUTC
REF PUTCHAR
REF PUTS
REF STRCAT
REF STRCMP

ISSUE 2 - 41

NOTES FROM MISOSYS

REF STRCPY
REF STRLEN
REF TOLOWER
REF TOUPPER

REF XTOI
REF ZERO
;*** now get all the modules ***
$$STEMP DEFL 0 ;init rel. storage
*SEARCH LC/LIB
$$STORG EQU $;storage areas here
@LCLIBEND DEFL $$STORG+$SSTEMP ;1abel to ORG to
END 402DH sback to LDOS if exec'ed

LISTING 2

#include stdio/csh

char buf(4], c;

main()

{ /* short filter to strip last 4 bytes from stdin */
/* written to strip transfer address from load */

/* modules. Jim Frimmel 11/2/83 */
buf[0] = getchar();
buf[1] = getchar();
buf[2] = getchar();
buf[3] = getchar();

while ((c = getchar()) != EOF)
{ putchar(buf[0]);
move(buf+l,buf,3);
buff3] = c;

LISTING 3

. LCLIB/JCL - Pre-assemble the LC standard library
. Format: DO LCLIB (DRIVE=D) DEFAULT: DRIVE=1
//1F -DRIVE
//ASSIGN DRIVE=1
//END
EDAS (JCL,ABORT)
L LCLIB
A LCLIB:#DRIVE#,LCLIB:#DRIVE# -SL -XR -NM -NC
B
XREF LCLIB:#DRIVE# (EQU)
XTRA <LCLIB/CMD:#DRIVE# >LCLIB/CMD:#DRIVE#
. Pre-assembly completed
Now edit the file LCLIB/EQU to prepare it for use

LISTING 4
@AND EQU 6004H @ULE EQU 6162H
@AP EQU 5COBH @ULT EQU 6155H
@APMOD EQU 522CH @WRMOD EQU 522BH
@ASL EQU 600BH @XO0R EQU 6174H
@ASR EQU 60E3H ALLOC EQU 5ACBH

ISSUE 2 - 42

NOTES FROM MISOSYS

@CMP EQU 613FH ATOI EQU 5C37H
©@COM EQU 60F 8H EXIT EQU 5300H
@epIv EQU 618FH FCLOSE EQU 5A67H
@EQ EQU 6119H FGETS EQU 585AH
@ERRET EQU 60B6H FOPEN EQU 598EH
@FCLS9 EQU 5A84H FPRINTF EQU 5378H
@FCNT EQU 0010H FPUTS EQU 5807H
GFTEND EQU 5222H FREE EQU 5B4EH
@FVTBL EQU 5202H GETC EQU 590AH
@GE EQU 6133H GETCHAR EQU 536FH
@GETFV EQU 60BCH GETS EQU 5346H
@GINT EQU 6107H ISALPHA EQU 5FE3H
0G0 EQU 5220H ISDIGIT EQU 5FFBH
GT EQU 6125H ISLOWER EQU 600BH
@GTFV1 EQU 60C4H ISUPPER EQU 601BH
OLCLIBEND DEFL 6211H ITOA EQU 5CF1H
OLE EQU 612CH ITOX EQU 5E2DH
@GLOMEM EQU 5200H MOVE EQU 6084H
eLT EQU 6139H PRINTF EQU 5325H
@MOD13 EQU 60B0H PUTC EQU 5957H
OMULT EQU 617BH PUTCHAR EQU 535DH
@NE EQU 611FH PUTS EQU 5334H
BNEG EQU 60F 3H SBRK EQU 5C11H
ONOT EQU 60FFH STDERR EQU 5206H
@OR EQU 6112H STDIN EQU 5202H
OPINT EQU 610CH STDOUT EQU 5204H
@PUTHL EQU 60CDH STRCAT EQU 602BH
@RDMOD EQU 522AH STRCMP EQU 603FH
@SENAM EQU 5226H STRCPY EQU 6059H
@SINAM EQU 5222H STRLEN EQU 6067H
@SONAM EQU 5226H TOLOWER EQU SFCDH
@SuB EQU 60EEH TOUPPER EQU 5FB7H
@UCMP EQU 6169H XTOI EQU S5EE9H
@euDIV EQU 61AAH ZERO EQU 6075H
OUGE EQU 614FH @UGT EQU 615BH
LISTING 5

;sLC/ASM - Modifications
;*:* =%
OSTART EQU 5200H ;Set to the code origin
*GET LCLIB/EQU ;Pre-assembled LC/LIB

ORG @LCLIBEND ;Reference next available code address
;*:* =k
3 Continue with initial LC/ASM code
;*:* =k

LD HL, (4049H) sRemove "@START" label **x*x

END OLCLIBEND ;Change entry point **x*%

ISSUE 2 - 43

NOTES FROM MISOSYS

LISTING 6

. QLC/JCL - Quick compile and assembly of LC programs
. format is: do lc (file=<progname>,{drive=d}, {show})
//if -drive

//assign drive=l

//end

//if show

1c #file#:#drive# +1

//else

1c #file#:#drive#

//end

edas (jcl,abort)

1 qlc

c/cprogram/#file#

//if show

atempxxxx:#drive# -we

//else

atempxxxx:#drive# -nl

//end

b
copy lclib/cmd #file#:#drive#

append tempxxxx/cmd:#drive# #file#:#drive#
. completed compilation

ISSUE 2 - 44

NOTES FROM MISOSYS

PaDS/PRO-PaDS VERSION 1.0

In this issue of NOTES, the PaDS section will correct a few typos that
appeared in the last issue. Next, there is one additional patch that must be
applied to the utility. Following the patches, I will discuss some more uses
of this interesting utility. First notice that there is a slight change in
the name of the Partitioned Data Set utility. After saying the name of the
utility hundreds of times, I felt that I, like others, were pronouncing it as
P - D - S. That's three syllables - entirely too long for most folks. Perhaps
some of you were already trying to pronounce PDS as a single-syllable "word".
My guess would be that "pids" may have been the result. Not 1liking "pids" as
the name of my product, I inserted a lower-case "a". Now the utility can be
pronounced "pads". This change was installed at the time that the LDOS/TRSDOS
6.x compatible version, PRO-PaDS, was released. Enough of this smalltalk.

This next patch corrects a problem in the PaDS wutility's PDS(APPEND)
member when the file you are trying to append is a null file. The patch was
listed in the last NOTES. The PATCH as printed was correct; however there was
a typo in the procedure. In addition, somehow I did not get this patch into
the MASTER DISK. I found that out when Robert J. Newton, of Houston, brought
another PaDS problem to my attention. When I gave him a "D"irect patch, it
turned-out to be in the wrong location. My working copy of PaDS had the
PDSA/FIX installed but the MASTER copy did not. Therefore, this patch was not
installed until PaDS serial number 220473. Therefore, 1if your PaDS serial
number is between 220001 and 220472, and you have not already installed the
PDSA/FIX, please do so. Since this is an X-patch, you will have to patch PaDS
by first copying APPEND to workspace, patching the separate file, killing and
purging the APPEND in the PaDS, then appending the patched copy back to the
PaDS. Do this with a BACKUP copy of PaDS. This is detailed as follows:

1. BUILD the PDSA/FIX file with:

. PDSA/FIX - PATCH TO THE APPEND MEMBER OF PDS (PaDS only!)

X'5499'=CD 3D 59

X'5930'=11 8A 58 2A A5 54 AF ED 42 CO 21 4D 59 C3 2E 56
OA 41 70 70 65 6E 64 69 6E 67 20 66 69 6C 65 20
69 73 20-6E 75 6C 6C 21 0D

. End of patch

2. Execute the command, "PDS(C) PDS(APPEND) APPEND"

3. Execute the command, "PATCH APPEND PDSA"

4. Execute the command, "PDS(X) PDS.PDS(APPEND)"

5. Execute the command, "PDS(P) PDS.PDS"

6. Execute the command, "!APPEND APPEND PDS.PDS"

Note specifically the exclamation point in step 6 - it is required! You now
have corrected the PDS(APPEND) member.

The next patch MUST BE APPLIED. It corrects a problem in the PDS(PURGE)
utility that trashes the file being purged WHEN A KILLED MEMBER ENDS ON A

ISSUE 2 - 45

NOTES FROM MISOSYS

SECTOR BOUNDARY". Since the patch is a DIRECT patch, its location depends on
the result of applying the PDSA/FIX. Therefore, this patch must be applied
AFTER you implement the PDSA/FIX. The PDSB/FIX was applied to the MASTER disk
starting with serial number 22C473. Again, this patch is for PaDS.

1. BUILD the PDSB/FIX file with:

. PDSB/FIX - PATCH TO THE PURGE MEMBER OF PDS (PaDS only!)
. APPLIED 10/06/83 - 220473

D1A,55=00

. End of patch

2. Execute the command, “PATCH PDS.PDS PDSB"

The PRO-PaDS utility MASTER disk had the A and B fixes applied starting
with serial number 220044. Therefore, PRO-PaDS users with serial numbers
between 220001 and 220043 need to apply the following fixes. The procedure to
follow for PROPADSA/FIX 1is the same as that shown for PDSA/FIX and the
procedure to install the PROPADSB/FIX is the same as that for PDSB/FIX;
however, use the following patches:

. PROPADSA/FIX - PATCH TO THE APPEND MEMBER OF PDS (PRO-PaDS only!)
X'288C'=CD 4C 2D
X'2D4C'=11 99 2C 2A 9B 28 AF ED 42 CO 21 5C 2D C3 2D 2A
OA 41 70 70 65 6E 64 69 6E 67 20 66 69 6C 65 20
69 73 20 6E 75 6C 6C 21 OD
. End of patch

. PROPADSB/FIX - PATCH TO THE PURGE MEMBER OF PDS (PRO-PaDS only!)
. APPLIED 10/13/83 - 220044

D15,E0=00

F15,E0=28

. End of patch

Now that the patches are out of the way, let me correct one more typo
that appeared in the last issue of NOTES. Page 1-10 was discussing a MAP
entry to use in appending a module that had two entry points, 5200 and 5203.
Unfortunately, where the specific map line was listed, one of the transfer
addresses was mistyped. The correct line follows:

COPY,APPEND,5200,COPY,5203

Since I am talking about MAP files, let me mention a difficulty
experienced by one of the PRO-PaDS wusers who was attempting to use the MAP
method to establish a subroutine library for use by the PRO-CREATE assembler.
It seems that he was using the EDAS editor to prepare the MAP file. However,
when the PDS(APPEND) utility was invoked, an "End of file encountered" error
was displayed after the messages that indicated all of his modules were
appended. Of course, APPEND could not update the directory. The reason for
this was that EDAS normally expects that an assembler source file is being
generated and automatically adds an X'lA' terminator to the file. The APPEND
utility thought that this was the beginning of another MAP record and
continued to read the file for the "member name" and transfer address. Since
the file created by EDAS ended at the X'1A', APPEND issued the appropriate

ISSUE 2 - 46

NOTES FROM MISOSYS

error and aborted. Therefore, if you are going to use EDAS to prepare MAP
files, use the "W!! filespec" command when writing your MAP file. The double
exclamation marks indicate that no terminator is to be written; thus the
X'1A' is suppressed. The APPEND module does trap a NULL to indicate the file
end in case you use SCRIPSIT to prepare the MAP file.

I rarely encounter a user with a problem in appending a CMD-type
program. When a problem does develop, the solution is simple. The problem
encountered is getting the error message, "“Load file format error" when
attempting to execute a CMD program that was appended to a PaDS. Where does
this error come from and why? To answer these questions, a little background
is in order.

When I developed the PaDS utility, the most important thing I wanted to
accomplish was to provide a "library" function that used absolutely no high
memory and was fast. If you were around the LDOS bulletin board on Compuserve
during the latter part of 1981, you will realize that the LDOS users wanted a
facility to collect executable programs similar to the SYS6 and SYS7 library
files. This is why I designed PaDS. To that end, I strongly feel that PaDS
met its goal.

In order to accomplish the friendly member-name access procedure and
provide the direct execution of members, I needed a way to interface the DOS
with each PaDS. I used a technique which capitalized on the method in which
the DOS loads and executes programs - as well as its own LIB members. Thus,
each PaDS that is built by the PaDS utility, incorporates a program that
executes when the PaDS is invoked. Thus, when you enter a command such as:

MYLIB(TEST)

the DOS executes a program called "MYLIB/CMD" and leaves register pair HL
pointing to the 1left parenthesis when control 1is passed to MYLIB/CMD. In
addition, register pair DE is still pointing to the system's File Control
Block which was established to access that program. Recognizing that, the
program which executes in MYLIB/CMD can parse the command 1line and determine
if a member specification was entered. Using the open FCB, it can also access
any part of the MYLIB/CMD file. This technique can actually be used to
distinct advantage in specific applications where a CMD file can be
constructed which has a data region following the program that the program
accesses.

I have termed the executing program a “Front End Loader" since it is' in
the front part of the PaDS and is used to load the requested member. The FEL
is written to each PaDS that is built with the PaDS utility. Under LDOS 5.1
(Model I/III), the FEL loads starting from X'5200'. The PRO-PaDS FEL Tloads
into the library overlay region at X'2600'. I wanted to make the FEL short
and sweet. That I did. Surprisingly, the FEL is less than 256 bytes. In order
to keep it short, the error message feedback had to be kept to a minimum.
Since messages can take up a lot of space, the FEL uses standard errors that
reside in the DOS error dictionary. Therefore, if you try to execute a PaDS
member that is not a CMD program [a data file member, for example], instead
of displaying a message such as "Attempted to execute a data member", PaDS
passes an error code 34 to @GERROR. Now error-34 is "Load file format error"
which is actually correct for this case. A data file generally is not a load
module! In using error-34, I saved about 40 bytes.

ISSUE 2 - 47

NOTES FROM MISOSYS

Now you know what that “"Load file format error" is all about. OK you
say, you told me what it means; but I tried to execute a member that was a
CMD program! What gives? Most likely, if you would do a PDS(D) of your PaDS,
you would find that the member in question was listed as a DATA member. Since
you know that you appended a CMD program, how then did it get classified as
data? That's an easy one. In order to classify a file as either DATA or
PROGRAM, the PDS(APPEND) module imposes a few tests. If the file extension is
“/CMD* AND the first byte of the file is X'05' or X'0l1' [which indicate a
load module HEADER record or LOAD record respectively]l AND the fourth from
last byte is an X'02' [which indicates a TRANSFER record], then the file is
interpreted as a PROGRAM; otherwise it is interpreted as data. The reason for
the classification is that CMD programs must have the TRANSFER record changed
from an X'02' to an X'04' [which indicates END of partitioned data set
member] so that they may be properly loaded and executed by the DOS loader. I
certaintly don't want every member to have a byte changed.

Now you say that your “troublesome" CMD program executed properly from
DOS but won't as a PaDS member. When DOS loads a plain-vanilla CMD program,
it reads through the file and loads X'0l' records into memory. The DOS reads
through until it reaches the TRANSFER record. It doesn't care if anything is
beyond the TRANSFER record [if it did, I would not have been able to
implement the PaDS utility as I didl. Thus, you will find that the CMD
program did not have a proper end-of-file pointer in the directory - proper
meaning that it indicates the last byte of the TRANSFER record as the end of
the file. Thus, when PaDS read the file, it could not detect the X'02'.

There is a simple ,solution to " the dilemma. First, confirm that what I
say is true by LISTing the CMD file in hex and noting where the listing ends.
If you don't see as the last four bytes, "02 02 LL HH", where LL and HH refer
to the low-order and high-order bytes of the transfer address, then the
file's EOF is wrong. All that you need do is run CMDFILE, load the CMD file,
then write it back out. CMDFILE reads a file until the TRANSFER record is
reached. When CMDFILE writes out its buffer, it will create a file with an
EOF that is correct for the CMD file. PRO-PaDS users can use the PRO-CESS
utility for this purpose.

Since the inception of PaDS, many users have used PaDS to store more
than just CMD files. PaDS is just as useful to store BASIC programs, DOS
filters, and other files just for archival purposes. However, when you want
to access those non-CMD members, you have to use PaDS utilities. There is no
way around the necessity for high-memory interfacing routines when the goal
is to provide DOS-type access to members. Witness the 3K of memory required
by a "library option" utility available for the TRS-80. To get flexibility
and powerful procedures, you have to give up something. Our criteria for no
high memory utilization to implement PaDS has worked well. Until I find the
time to develop PaDS version 2 [which is to be designed to provide READ
access to members through standard DOS calls], there are simple procedures
that can be used to access members.

For instance, if you want to install a filter that s resident in a
PaDS, all you need to do is to PDS(COPY) the filter. member to a work file
then filter the device using the work file. If you want to delete the work
file after the filter is applied, you can KILL/REMOVE it. This procedure is
perfect for Job Control Language. Consider the JCL file:

ISSUE 2 - 48

NOTES FROM MISOSYS

. JCL to invoke a filter stored in a PaDS
//if -dev

//assign dev=pr

//end

pds(copy) filters/cmd(#file#) #work#/fl1t
//if pl&p2

filter *#dev# using #work#/f1t (#pl#,#p2#)
//end

//if pl&-p2

filter *#dev# using #work#/f1t (#pl#)
//end

//if -pl&-p2

filter *#dev# using #work#/f1t

//end

//exit

With this JCL, you could invoke the LDOS 5.1 minidos filter via a command:
do f1t (dev=ki,file=minidos,pl=type)

This, of course, assumes that you have a PaDS called FILTERS/CMD that has the
MINIDOS/FLT filter as a member. The //ASSIGN macro is shown to provide a
default for *"dev" of the *PR device. Thus, if *PR is the device to filter,
you don't have to enter "“dev=pr". You could choose the default to be whatever
device you most frequently filter. You could also add a JCL statement to
delete the "#work#/f1t" file after the filtering. 1 also demonstrated the
method to add parameters to the filter command. This procedure works for PaDS
and PRO-PaDS users.

Model I/III wusers of LBASIC could also RUN members that are BASIC
programs by specifying the following sequence of BASIC statements:

CMD"PDS(COPY) BLIB/CMD(DEMO) WORK/BAS
RUN "WORK

This can't be done from TRSDOS 6.x BASIC because Microsoft's BASIC does not
perform the program shift to high-memoryy and protection as is done in
LBASIC.

I have had a few requests from the more experienced hackers as to the
structure of our PaDS file. These queries are looking for information
sufficient to write specialized access routines. The PaDS is a 1load module
and contains various types of load module records. Since I have discussed the
structure of load module records in my book, THE PROGRAMMER'S GUIDE TO
LDOS/TRSDOS VERSION 6, I will not repeat myself here. What I will cover is a
block sketch of the PaDS.

The PaDS starts with the Front End Loader. This is a standard program as
discussed above. The only difference is that the header record begins with an
X'06' instead of an X'05'. This byte is used in the PaDS commands to identify
the file as a partitioned data set usable with PaDS. The MEMBER directory
follows the FEL. This directory X'OC' records as discussed in the GUIDE. The
member directory is terminated with a X'OE' record used to determine if the
member specification passed is contained in the directory [if the X'OE'

ISSUE 2 - 49

NOTES FROM MISOSYS

record is reached prior to a match in the directory, the searching
immediately stops]. Following the member directory is the ISAM directory
composed of X'08' records. Each member record corresponds to a unique ISAM
record matched up via the ISAM number. The ISAM directory is terminated by a
X'0A' record which is used by the DOS loader to detect that the ISAM member
was not found [if it did not match up the ISAM number requested with any in
the ISAM directory]. What follows is a X'04' record, again used by the DOS
loader in a pure library file to inhibit execution of the first member if the
ISAM linkage was never established. The member modules follow. The ISAM
directory contains a three-byte pointer to the relative record and byte which
starts the member. The member directory record contains a three-byte length
value which specifies the exact length of its member.

There you have it. The hacker should find it easy to write specialized
routines to access the PaDS. The non-programming user may want to wait until
we release version 2 of PaDS. Don't forget Scott Loomer's PDS TUTOR package.
Scott can be reached at 315 Palomino Lane, Madison, WI 53705.

THE PROGRAMMER'S GUIDE

MISOSYS began publishing THE PROGRAMMER'S GUIDE TO LDOS/TRSDOS VERSION 6
back in August of this year (1983). It, of course, was written by Roy Soltoff
- the primary designer of TRSDOS 6.0 (a 1la LDOS 6.0). It was authored and
published due to the reluctance on the part of the Tandy Corporation to make
available their Technical Reference Manual in a timely manner. The GUIDE [not
to be confused with THE HITCHHIKER'S GUIDE] is designed to be used by the
LDOS Version 6 assembly language programmer. The GUIDE, in its 214 pages,
covers the procedures to be followed when writing programs for use under
version 6 LDOS.

The GUIDE also contains a great deal of background information on device
handling, including the most in-depth discussion of device filtering and
routing that you have ever read. A description of the GUIDE is contained in
catalog 83-2. As an example of the GUIDE's content, Figure 1-2:System Map is
an example of one figure excerpted from chapter 1.

The GUIDE also makes good reading for the Model I or Model III LDOS user
since LDOS has a great deal of similarity across the Model I/III version 5
and the RAM-based LDOS version 6.

For those that have already acquired a copy of the GUIDE, there are a
few corrections to make. First, pages 3-47 and 3-48 have been revised to
change all references of “IX" to *IY". If your book does not have the revised
page, contact MISOSYS and request the new page.

Other corrections are as follows:

1) page 2-32, change the statement beginning with "+3 - Flag to indicate" to
read “+3 - Contains the receive character code interpreted as BREAK." Note: I
am suggesting to LSI that they change the COM/DVR module to interpret a value
of NULL to indicate that no checking for BREAK/PAUSE/ENTER conditions should
be done if the BREAK character code value is set to NULL.

ISSUE 2 - 50

NOTES FROM MISOSYS

2) Page 6-139, change VIDEO POKE register B value from "B => 1", to "B => 2".

3) Page 6-139, SET CURSOR POSITION; change the statement, "A <= Will
read, "A <= Will contain the error code if an error was encountered."

4) Page A-150, paragraph 4; change the phrase "256

to read "256 load bytes respectively".

the

another publication,

LOWCORE: X'0000' - @$SYS
RST vectors, NMI vector, System flags, Date,
Time, System FCB, DEBUG register save area,
JCL FCB, Command FCB, SVC Table, DCB Table,
System stack, Miscellaneous data, Command input
buffer, Drive Control Table, Device I/0 handler,
Clock task, Memory management routines.

IOR: @$SYS - X'12FF'

Keyboard, Video, Printer, and Disk drivers.

SYSRES: X'1300' - X'1DFF'

File access routines, SVC processor, System
overlay handler, System program loader,
Interrupt Task Schedular, System buffer.

SOR: X'1E00' - X'23FF'
Execution region for system overlays 2-5, 9-13,
overlay disk file buffer.

LOR: X'2400' - X'2FFF'

Execution region for system library comands |
contained in libraries A, B, & C. |

UPR: X'3000' - (HIGHS)

Execution region for user transient programs
(note: programs not accessing the system |
libraries can start at X'2600°'. |

HIMEM: (HIGH$)+1 - X'FFFF'® |
Region for relocation of extended system and |
user static modules.

ISSUE 2 - 51

o.M to

load bytes respectfully"

I have a few odds and ends to bring up in this issue of NOTES concerning
use of SOLE. The first item to be discussed is a big problem because
the LSI JOURNAL, published totally erroneous information

NOTES FROM MISOSYS

concerning the subject. Since LDOS users have been 1led to believe that
whatever LSI publishes must be fact, when they present material that is
factually in error - especially concerning a MISOSYS product - it can be
harmful to our customers. Lot me emphatically state that when you have
questions concerning MISOSYS products, please give us the opportunity of
respoding to your query. Do not go off half-cocked and develop what you think
is a solution to a suspected problem.

1 did get quite perturbed with LSI for publishing a particular article
that appeared in their April 1, 1983 LDOS QUARTERLY. I first saw the article
when I received a copy of that QUARTERLY [as an aside, I am no longer on
LSI's registration 1list for QUARTERLIES or JOURNALS]. I subsequently
investigated the problem and solution posed in the article since the author
HAD NEVER MADE A BUG REPORT TO MISOSYS. I then drafted a letter to LSI
protesting their publishing such erroneous information. The text of my letter
to LSI is repeated here so that any SOLE user who read the LSI article would
be advised as to the erroneous information contained in that article. The
text of the letter 1is followed by THE OFFICIAL PATCH which contains the
method of fixing the bug.

Excerpts from letter to LSI dated May 18, 1983:

“Rather than wait until the next LDOS QUARTERLY before speaking my piece
concerning one article in the April 1, 1983 issue of THE LDOS QUARTERLY, I
thought it best to bring this to your attention now. This letter addresses
the article entitled "SOLEFIX -- Fix that GAT error!".

Let me first state that I find it highly ludicrous that the content of
this article was not brought to my attention prior to its publication.
Considering the relationship our respective companies entertain, I would
certainly expect that your organization would at the barest minimum, attempt
to query MISOSYS as to the technical accuracy of an article relating to a
MISOSYS product.

Let me get to another point concerning "“SOLEFIX". It was technically
INACCURATE. The article purports to describe a granule allocation problem
where a system disk has been altered with SOLE. The article states that,
'SOLE also alters the diskette's directory by setting the allocation bits for
all 3 granules of cylinder O... Unfortunately, SOLE fails to allocate one of
these granules to a file; this creates a granule allocation table error.'

Far be it for me to be "the expert" on LDOS; however, let me point out
that when SOLE reformats the BOOT track of the double density system
diskette, the track now has TWO GRANULES OF 5 SECTORS EACH. The author would
have you believe that the track still contains three granules. The author
goes on to say that “Super Utility Plus fixes this error for you, and thus
allows the system to write on cylinder 0, granule 2." WHAT ERROR? WHAT
GRANULE 2?7 Because SU+ alters directory information, why does the author
consider the problem to be a "BAD" GAT?

The next error the author performs 1is to come up with a procedure to
allocate "THE THIRD" boot granule to the BOOT/SYS file!!! This technique is
so illustrated in his SOLEFIX/ASM program. Now what the author's program does
is change the allocation information for BOOT/SYS to three contiguous
granules from two contiguous granules. He sets the CREATE bit to inhibit

ISSUE 2 - 52

NOTES FROM MISOSYS

deallocating this fictituous “space" SINCE THE FILE STILL SHOWS ONLY 7
SECTORS.

I am glad that Super Utility Plus is happy with this altered
arrangement. Unfortunately, in my opinion, the alteration is wrong because
BOOT/SYS is only two granules in length and track zero contains only TWO
granules. If the author intended for the article to point out a deficiency in
SU+ and how one can alter a SOLEd disk to fool SU+, it failed to convey that
thought. If it intended to accurately document the allocation schema of a
nixed density diskette, then the author also failed that category. If the
author wanted to use the LSI newsletter as a medium for “documenting®
erroneous data, he succeeded. The one commendable point is that the author's
program serves to illustrate code interfaced to standard system entry points
[I do not know why he thinks he has to “AND 63" the error return code. I
would also recommend his END statement be changed to "END START*].

End of excerpt of letter to LSI.

The LSI Journal is certainly not the vehicle to be used for calling
program problems to the attention of a program's non-LSI publisher. I readily
admit that SOLE did in fact have a bug. The bug was NOT in allocating only
two granules for BOOT/SYS. The problem was due to the fact that I neglected
to SET bit 2 of the lockout byte for cylinder 0. Thus, even though the
allocation byte for cylinder 0 was correct, the lockout byte showed that the
cylinder had a third granule. Thus, if a directory checking utility was used
on such disk, it would have shown cylinder 0, granule 2 as allocated but not
used for any file. Unfortunately, SU+ automatically "corrected* the "problem®
by deallocating the “fictituous® third granule. The proper and CORRECT
solution is to correct SOLE1/CMD to lockout granule 2. The following patch is
the OFFICIAL PATCH to correct this problem.

. SOLE1A/FIX - Applied 06/01/83 starting from serial number 210694

. Corrects problem of NOT locking out the eliminated boot track
granule

X'522B'=47 53

X'5347'=2E 60 36 FC C3 39 52

. End of patch

While we are in this discussion, let me relate that Rick McDonald and Bob
White both reported that SOLEd disks that have been backed up by the LDOS
BACKUP utility per the procedure specified on page 7 of the SOLE
documentation results in a disk that has 1.5k more space available than the
source disk. After investigating this bug report, I realized that the “extra
1.5K" derived again from the BOOT track having the third granule free. BACKUP
did just what SU+ did. As it turns out, it wasn't so much a fault of BACKUP
as it was that BACKUP is very confused by a mixed density disk. Suffice it to
say for now that you must correct the procedure listed in the SOLE manual
(page 7, paragraph 1, sentence 3) to read as follows:

ONCE YOU HAVE THE DISKETTE FORMATTED, RUN SOLE1 FOLLOWED BY SOLE2,
EACH TIME REFERENCING THE DRIVE CONTAINING THE NEWLY FORMATTED DISK.

1 have printed the sentence in all capitals here only for emphasis. The
important point is that SOLE1 must be run first so as to alter the GAT's

ISSUE 2 - 53

NOTES FROM MISOSYS

allocation and lockout tables for cylinder 0 to reflect 2 granules only and
that both granules are in use.

One SOLE user has passed on this patch to use SOLE with the LNW at 4
Megs. In SOLE2, change the byte at X'56CC' to an X'10'.-The current value at
that location is X'08'. This serves to lengthen the delay after passing a
command to the disk controller.

Mike Kaizen, of Rockville, MD, has been a devoted follower of MISOSYS
products. Mike has been a customer of mine starting with DUTIL and DISK*MOD
(Ashton-Tate, eat your heart out - DUTIL was a name of a MISOSYS product back
in 1979). Mike recently experienced a problem in trying to re-BOOT a Model I
using a SOLEd system disk. I believe that the disk booted fine if the RESET
button was pressed but the BOOT command would cause the system to hang. Mike
traced to problem to use of the CHROMAtrs color board - which seems to be a
hot item for inexpensively adding color to your TRS-80 [actually, it seems
that the cheapest way to add color is to buy a 16K Atari 400 which are going
for $49 these days with the Atari rebate]. Mike discovered that the CHROMAtrs
board did not buffer the RESET 1line. There was already too much load on the
CPU reset bus and the additional load from the color unit was preventing the
reset from actually taking place. The result was that the disk controller was
not reset to single density from double density and couldn't read the single
density BOOT sector.

Mike's solution was not to unplug the CHROMAtrs board but to modify it
so as to buffer the reset line. I'1] try to draw the schematic change using
the DW-II character set.“What you need to do is add a 74LS08 on the CHROMAtrs
board in line with the reset bus line. Note the schematic below:

|pin 7 to GND Juse nearby
|pin 14 to +5V 174LS02 chip

| . 5V|

| | <- 40 pin connector /

| | to TRS-80 .
(| 4.7/ | |
|| \ (9]
|| /191
(| 1
(| || 34] 8|
| 1 9 I 1 Al
I |==---- | __ | === |__|
| 1 |===--- | / 0.1§

|| GND

|1

| 21

I__1

- this trace is visible for cutting
from the top of the board

I have received a few queries from Model I SOLE users of how to backup a
double sided SOLEd diskette. An attempt to do so by using BACKUP results in a
DATA SECTOR NOT FOUND DURING READ error. I cannot spend the time to work up a
solution as the DOS doesn't generally support booting double-sided system
disks and very few individuals are attempting to use such disks. Also, the

ISSUE 2 - 54

NOTES FROM MISOSYS

only 2-sided disk drive at MISOSYS s an 80-track drive which is never used
on our old Model I test station. However, what I would like to do is to
explain why such a diskette cannot be backed up. I would also like to
recommend that someone using a 2-sided system disk on a Model I with SOLE
investigate my proposal more specifically and arrive at a patch to BACKUP.
Before I go into the discussion, let me state that the application of SOLE to
a two-sided diskette results in only the first side being reformatted to
single density - the second side remains in double density [but should be
left unused].

To begin, when BACKUP is invoked for mirror-image copying, one value it
calculates is the number of sectors per cylinder. This value is then plugged
into the BACKUP code to be used where it is needed. If we are talking about a
5" double-density diskette, the number of sectors per cylinder 1is 18 for a
single sided disk and 36 for a two sided disk [a two-sided disk has sides
numbered 0 and 1]. Let's look at the one-sided situation first.

The SOLEd disk has 18 sectors per cylinder on all cylinders except the
first, where it has only 10 (numbered 0-9). When BACKUP tries to read sector
10 of cylinder 0, the disk driver has already switched to single-density and
has automatically updated the DCT to show that 9 is the highest numbered
sector. Thus it says, "whoa, this disk only has sectors 0-9." Since the
driver is a little intelligent, it attempts to see if the sector in question
is on side 1. After subtracting off a track's quantity of sectors, the driver
next would try side 1 with sector 0 instead of side 0 with sector 10. Before
actually going to the controller with this informatign, it checks the DCT to
see if the drive is two-sided. Finding only a single sided drive indicated,
it readdresses side 0 and does not pass a “"sector number out of range" error
back to the caller. Thus, when BACKUP passes logical sector numbers 10-17,
the driver rereads sectors 0-8 - thereby backing up those sectors twice.
Zarly users of SOLE may recall a problem of drive 3 selection when backing up
a SOLEd disk. This was due to the LDOS disk driver not checking if the disk
wvas two sided thus promping a change to the LDOS driver.

Now, let's look at the two-sided case. First, we now have BACKUP
computing 36 sectors per cylinder. Again, when sector 10 is passed to the
driver, sector 10 is readdressed to sector 0 of side 1 - BUT IN SINGLE
DENSITY! When the driver tries to read this sector, it gets a record not
found error because side 1 is in double density. The driver (we are talking
about PDUBL or RDUBL) then switches density to double (part of the automatic
density recognition) which now updates the DCT to show 17 as the highest
numbered sector. Now before the driver tries to reread the sector, it must
invoke the SEEK routine which now calculates that sector number 10 1is on side
0! Therefore, the second attempt still results in a sector not found error.
The driver switches to single density and repeats the process until it times
out after the ten retries. Sectors numbered 10-17 of cylinder zero cannot be
backed up because they do not exist!

The root cause of the problem is that BACKUP was never programmed to
deal with a mixed density diskette. The solution, of course, is to correct
BACKUP so that it essentially recalculates the number of sectors per cylinder
while it is copying cylinder 0. We would not want BACKUP to perform the
calculation on every cylinder as then there would be no way of ensuring a
nirror image condition. Suffice it to say that the only practical case is
where cylinder zero is of single density and all other cylinders are double

ISSUE 2 - 55

NOTES FROM MISOSYS

density.

BACKUP uses the sectors-per-cylinder value in three routines critical to
the backup of a SOLEd diskette. These are the routines for LOADING, DUMPING,
and VERIFYING cylinders. If we want to correct BACKUP, we have to come up
with a technique that will determine when sectors 10-17 of cylinder zero OF A
SOLED diskette are being referenced and inhibit the reading, writing, or
verifying sector request from being performed.

I will address this issue using LDOS 5.1.3 BACKUP as a base [I will not
address the issue for 5.1.4 or any other release of LDOS]. A few words are in
order for the BACKUP module itself. The mirror-image piece is assembled to
execute at X'5900' but initially loads at X'6100' [see my discussion of LORG
under EDAS/PRO-CREATE]. Therefore, if you need to disassemble BACKUP and add
patch code, your patches must execute at an address different from where they
load. The "loading" routine invokes RDSEC with “CALL NZ,RDSEC" at address
X'5A23' which loads at X'6223'. The "dumping" routine invokes WRSEC with
"CALL WRSEC" at X'5A98' while the "verifying" routine invokes VERSEC with
“CALL NZ,VERSEC" at X'SAF1'. The code from X'5992' through X'59B9' calculates
the sectors per cylinder and stuffs the result into the three critical
routines plus two others you need not be concerned with. Your fix may need to
recover the initially calculated value.

The big problem 1is in making sure your changes do not effect the backup
of two-sided single density or double density disks. Since a SOLEd system
disk has the entire cylinder zero locked out, you need not worry about trying
to use the second side -* the loss of disk space is minor. What is needed,
therefore, is a technique to determine whether a particular source disk is a
SOLEd disk. If it is, then if we are copying cylinder zero and the sector
number is greater than nine, we should ignore it. That sounds simple enough.
However, how do we ascertain the disk as one that has been SOLEd?

I propose that you investigate patching BACKUP at the three Tlocations
jdentified above. When your patch code is entered, register D contains the
cylinder and register E contains the sector. Also, register IY points to the
DCT for the drive. For the sake of speed, I suggest code such as:

IN D

DEC D

JR NZ,DO_THE_REQUEST
ELSE TEST_FOR_INHIBIT

This tests for cylinder zero or otherwise. If BACKUP is not on cylinder zero,
no further checks need be made and the request is performed. If it is on
cylinder 0, you could then check for a sector number less than 10 or greater
than 17 and also perform the requested function if the number is not in the
range 10-17. Once you find that the cylinder is zero, and the sector is in
the critical range, you must determine if the disk is a SOLEd disk. After
thinking about this problem, I suggest that you test if the current number of
sectors per cylinder is equal to the original number of sectors per cylinder,
then the request is performed, otherwise it is not performed. In order to
calculate the current number of sectors-per-cylinder, it should be sufficient
to execute code such as:

ISSUE 2 - 56

NOTES FROM MISOSYS

LD A, (IY+7)

AND 1FH

INC A

BIT 5, (IY+4)
R 7,343
ADD A,A

which doesn't take the number of heads-per-partition into account [that is
unneeded for single disk floppies]. If the disk is a SOLEd disk, reading
sectors 0-9 would have automatically conditioned the DCT for single density
and any current computation of sectors per cylinder would result in 10
(single sided) or 20 (two sided). By comparing this result with the original
value calculated in the routine starting at X'5992', assume that a different
value indicates a SOLEd disk.

Do not affect registers DE, HL, nor IY. You should only need to use the
accumulator. It appears that the area from X'5CE5'-X'S5CFF' is available.
Patch code for the mirror image part cannot extend past X'5CFF'. I doubt that
this amount is sufficient to implement the proposed modification - thus, you
will have to get cute and use some of the messages for patch space. If anyone
successfully implements such a patch or has some other usable technique for
accomplishing the desired result, please write it up and submit it for the
next issue of NOTES.

ZGRAPH/PRO-ZGRAPH

sSssSssssssIz==3I=IT o

In this issue of NOTES, I am proud to report that Karl Hessinger has
developed an enhanced version of ZGRAPH - version 5. First, this version is
written completely in assembly language - it is fast. Second, it includes an
improved circle generating routine [improved for blinding speed]. It now
supports a "fill" function that fills in all pixels of a boundary. This
operation is similar to the "paint" operation under graphic BASICs.

Version 5 ZGRAPH now uses all available RAM for buffer space. Instead of
limiting you to four buffers, it creates as many as can fit in the RAM space
which follows the program. With the ability to store 15-25 screens and. save
all the screens into a single file, Karl decided to develop another utility
which "plays" the screen images in a timed succession. This is great for
making up a graphics slide show.

Karl added magnification and reduction functions to ZGRAPH so that you
can take a rectangular block of the screen image and either expand it or
shrink it. You get nine levels of expansion and two modes of reduction.

The ZGRAPH package now supports the Radio Shack DMP-series of printers -
including the DMP-2100. Printer support has been shifted over to a separate
group of wutilities - the xxBINCAT/CMD programs. The RSBINCAT supports the
Radio Shack DMP printers while the EPBINCAT supports the Epson printers. Each
BINCAT program provides the features to concatenate separate ZGRAPH screens
horizontally as well as vertically to produce large graphic printouts from
separate screen images. The xxBINCAT programs also permit magnification of
the concatenated image.

ISSUE 2 - 57

NOTES FROM MISOSYS

If you presently own Model I/III ZGRAPH version 4 and wish to upgrade to
Model I/III ZGRAPH version 5, you can do so by returning your ZGRAPH master
diskette to MISOSYS. There will be a $20 charge. In return, you will get an
updated diskette and a brand new version 5 ZGRAPH manual.

Some of the ZSHELL wusers have asked for additional features for the
ISHELL package. Therefore, starting with registration number 430063, the
program, WC, has been included with the ZSHELL package. WC is a "“shell"
processor that allows you to invoke compatible commands on a number of file
specifications that match a wildcardspec entered on the command line. You
enter the command line once while the WC shell processor searches the
designated disk drive(s) for files that match your wildcard specification.

WC builds a Job Control Language file of your command line (minus the
"WC") substituting each matching file specification for the wildcard
specification on a separate command 1line. WC then automatically executes the
JCL file. The "wildcardspec" uses the file name and file extension as two
distinct fields for matching purposes. If the drive specification is entered,
WC will search that specific drive for all files matching the name-extension
wildcard fields. If the drive specification is omitted, then all drives will
be searched. Within each field, WC accepts two wild characters, “?" and "*".
The question mark will match any character in that character position. The
asterisk is wused to match all trailing characters in the field. For example,
“?SHELL/TXT:1" will match with ASHELL/TXT, BSHELL/TXT, etc. but ASHELL1/TXT
will not match. A global match of all filespecs would be an entry of the
form, “*/%x"; whereas a match of all /CMD files would be an entry of the form,
"*/CMD“". If a minus sign, "-", precedes the filename field, WC will select
files that do not match the wildcardspec. Any entered password will be used
in the full file specifications generated by the selection process. Note that
this wildcard syntax is different from the DOS partspec - and more powerful!

WC is quite useful to perform repetitive tasks on files whose file
specifications are similarly constructed. For example, to list out all /TXT
files on drive 1, you could use a WILDCARD entry of:

WC LIST */TXT:1

What DOS commands are compatible? A1l of the following DOS commands are:
APPEND, ATTRIB, LIST, LOAD, REMOVE/KILL RENAME, RESET(V6), and RUN. Other
programs that expect a filespec on the command line are also "compatible".

Aside from just adding WC, ZSHELL itself has been slightly altered to
improve its performance when interacting with Job Control Language. Also, for
our LC users, Karl added an "escape" character that can be entered to inhibit
ZSHELL from scanning a command line. If a double-quote character (") is the
first character entered on a command line, it is trapped by ZSHELL and will
inhibit ZSHELL from performing any redirection functions on that command.
Thus, the invocation of an LC-created program could utilize the 1/0
redirection capabilities of LC even though ZSHELL is active.

ISSUE 2 - 58

NOTES FROM MISOSYS

If you own a ZSHELL package with a registration number 430001 through
430062, you may return it for an update. The fee is $5 which includes the
disk upgrade, additional documentation, and shipping.

Let me point out a very significant use of ZSHELL that is easily
overlooked. Many LDOS users have realized the potential of Job Control
Language for automating many repetative operations. The knowledgable JCL user
understands that JCL functions only with LINE INPUT: the @KEYIN routine or
LINEINPUT from LBASIC. Programs which use the single character keyboard calls
(BKEY, @KBD, or LBASIC's INKEY$) cannot be operated via JCL. As there exists
many fine menu-driven programs which rely on single-character inputs,' they
are unusable with JCL. Rather than attempt to patch this, and patch that, to
utilize some “typein" process, ZSHELL permits extremely powerful
user-controlled file input within its redirection capabilities.

ISHELL's standard input redirection (the keyboard device, *KI) provides
for three end-of-file options selectable at command invocation. Each option
selects a particular operation that will be undertaken upon reaching the end
of the redirected input device prior to the command's completion. For
instance, you can have ZSHELL exit to the @ABORT vector which immediately
ceases. the execution of the command. Alternatively, you can have ZSHELL
return control to the standard device (the keyboard) and automatically
indicate a condition as if the BREAK key was depressed. The normal method of
handling the EOF condition is to restore control to the keyboard. Thus,
ISHELL 1is designed to gracefully return the keyboard go you.

This one ZSHELL function - that of controlled redirection of character
input - will provide handsome rewards to your total LDOS operation once you
purchase and start using ZSHELL.

CONTRIBUTIONS

The following program can be used by LDOS 5.1.x users to transfer files
from NEWDOS80 or DBLDOS double density media. In the case of NEWDOS80, source
diskettes cannot have extended directories. The program acts as a filter on a
designated disk drive. Once the program is invoked, the referenced drive can
only be used to read files from the "alien" diskettes. The command procedure
to invoke the drive filter is:

CONVDOS :D ({NEWDOS}, {DBLDOS}, {REMOVE})

Specify “NEWDOS" or *“N" if you are going to transfer files from NEWDOS80
double density data diskettes (when track zero 1is double density). Specify
"DBLDOS" or "D" if you are going to transfer files from Percom's DBLDOS, or
NEWDOS80 Model I system disks (when track zero is single density). Specify
"REMOVE" or "R" when you are finished transferring files and wish to
eliminate the filter. A warning... DBLDOS data diskettes do not store the
directory track number in byte 2 (relative from 0) of the BOOT sector.
Therefore, problems can develop when transferring files from DBLDOS data
diskettes.

To capture the following program, enter the data as ASCII and use any of
the public domain BINHEX conversion programs.

ISSUE 2 - 59

NOTES FROM MISOSYS

05064 34F 4E56444F 0102005 2E 53A2501 FE 492027215444225852218A4222
6E53214E44226155215144226E5521114422815222955222€ 852220£5321
7353CD6744E 17 23FE 2028F AFE 3AC262537E 23E607 CA6A5 34F CDBF 47F DTE
UOFEC9CA5AS3111055CD7644C26A5301000073812839F DESE 1CD3853C25E
53F D5E01FD560221 3C00194€ 2346F D7101FD70022A494023AF ED5 2212154
(2325 3€823235E 2356E0534940210754C 332530100001 100007881 8283CA
66537 AB32804AF 327255F DESE 1CD3853CA5653117C55010A00E08000217C
55007 03E607F 6C0DD7 7U30D7E 04E 60FF 6400D7704DD3606220036071100
3609FF 2449402243551 1855505E SB7ED52444D2A575509225 75524760102
0053550922765501E 1014500E DBE D5 349401 3F D7 301F D7202F D360340F D
360440F D36063CFD360709F0360824FD36091121EB53C06744C32040€523
7€23666F 232323231145551ABE 200823134 71ABE 20041 32310F 8E1C921€ED
540D21AD54DD21CE54DD214954002195540D216754C07B44C33040434F 4€
56444F 532020204 36F 6E 7665727 3696F 6E 207574696C69747920666F 7220
73656C656374656420444F 537365732020205665727 3696F 6E 2031 2€ 320
436F 707972696768742028632920313938322020627920526F 7920536F 6C
746F 66662C20416C6C207269676874732072657365727665640A00436F 6
76657273696F 6E 2066696C74657220696E 730102005474616C6(65640043
6F 6E 7665727 3696F 6E 2066696C 7465722072656 D6F 7665640052656 06F 76
6564206275742063616E 6E6F 74207265636 C61696020686967682060656D
6F 7279210044726976652073706563696669636174696F 6E 207265717569
7265642100506172616065746572206572726F 12202020747279203C4E 45
57444F 532C44424C444F 532C52454D4F 56453€ 2100444F 53207061726160
657465722072657175697265642100526571756573746564206472697665
20736C6F 74 206E 6F 7420696€20757365210044657 369676 617465642064
72697665206E 6F 742066696(74657265642100447269766520616C726561
64792066696 C746501 7E0055726564207769746820444F 53435621004442
4C444F 539E 524420202020209E 524E 4557444F 53A1524E 2020202020A152
52454 D4F 56455€ 525220202020205E 5200180A000007434F 4E56444F 5378
FE0B3EOFDOF DESFD217CS5E5053E 0A6A2600C0C144D1 D565836F 8C95673E
1§goc«4srssue153co7c5501Fo£1c902020052

*

ISSUE 2 - 60

MISOSYS
P.0. Box 4848
-Alexandria, VA 22303-0848

Contents:

Printed Matter

BULK RATE
U. S. POSTAGE
PAID
ALEXANDRIA, VA
PERMIT NO. 916

	working-misosys-2a.pdf
	working-misosys-2.pdf
	doc_20110513073921.pdf
	doc_20110513073927.pdf
	doc_20110513073940.pdf
	doc_20110513073956.pdf
	doc_20110513074010.pdf
	doc_20110513074026.pdf
	doc_20110513074038.pdf
	doc_20110513074052.pdf
	doc_20110513074156.pdf
	doc_20110513074210.pdf
	doc_20110513074225.pdf
	doc_20110513074239.pdf
	doc_20110513074300.pdf
	doc_20110513074312.pdf
	doc_20110513075656.pdf
	doc_20110513075707.pdf
	doc_20110513075720.pdf
	doc_20110513075730.pdf
	doc_20110513075740.pdf
	doc_20110513075752.pdf
	doc_20110513075806.pdf
	doc_20110513075818.pdf
	doc_20110513075830.pdf
	doc_20110513075843.pdf
	doc_20110513075856.pdf
	doc_20110513075908.pdf
	doc_20110513075921.pdf
	doc_20110513075935.pdf
	doc_20110513075945.pdf
	doc_20110513075957.pdf
	doc_20110513080008.pdf
	doc_20110513080018.pdf
	doc_20110513080032.pdf
	doc_20110513080044.pdf

	doc_20110513080314.pdf
	doc_20110513080331.pdf
	doc_20110513080345.pdf
	doc_20110513080355.pdf
	doc_20110513080408.pdf
	doc_20110513080422.pdf
	doc_20110513080434.pdf
	doc_20110513080446.pdf
	doc_20110513080458.pdf
	doc_20110513080510.pdf
	doc_20110513080521.pdf
	doc_20110513080535.pdf
	doc_20110513080547.pdf
	doc_20110513080602.pdf
	doc_20110513080619.pdf
	doc_20110513080633.pdf

	doc_20110513081319.pdf
	doc_20110513081333.pdf
	doc_20110513081338.pdf
	doc_20110513081351.pdf
	doc_20110513081406.pdf
	doc_20110513081409.pdf
	doc_20110513081423.pdf
	doc_20110513081440.pdf
	doc_20110513081445.pdf
	doc_20110513081500.pdf
	doc_20110513081503.pdf
	doc_20110513081520.pdf
	doc_20110513081523.pdf
	doc_20110513081535.pdf
	doc_20110513081556.pdf
	doc_20110513081559.pdf
	doc_20110513081611.pdf
	doc_20110513081614.pdf
	doc_20110513081627.pdf
	doc_20110513081631.pdf
	doc_20110513081648.pdf
	doc_20110513081651.pdf
	doc_20110513081653.pdf
	doc_20110513081656.pdf

